• Photonics Research
  • Vol. 8, Issue 2, 127 (2020)
Henry C. Frankis1、*, Hamidu M. Mbonde1, Dawson B. Bonneville1, Chenglin Zhang1, Richard Mateman2, Arne Leinse2, and Jonathan D. B. Bradley1
Author Affiliations
  • 1Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
  • 2LioniX International BV, Enschede AL 7500, The Netherlands
  • show less
    DOI: 10.1364/PRJ.8.000127 Cite this Article Set citation alerts
    Henry C. Frankis, Hamidu M. Mbonde, Dawson B. Bonneville, Chenglin Zhang, Richard Mateman, Arne Leinse, Jonathan D. B. Bradley. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain[J]. Photonics Research, 2020, 8(2): 127 Copy Citation Text show less
    References

    [1] K. Wörhoff, R. G. Heideman, A. Leinse, M. Hoekman. TriPleX: a versatile dielectric photonic platform. Adv. Opt. Technol., 4, 189-207(2015).

    [2] C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, K.-J. Boller. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron., 24, 4400321(2018).

    [3] J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding. Opt. Express, 19, 24090-24101(2011).

    [4] E. Shah Hosseini, S. Yegnanarayanan, A. Hossein Atabaki, M. Soltani, A. Adibi. High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt. Express, 17, 14543-14551(2009).

    [5] D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, C. Roeloffzen. Silicon nitride in silicon photonics. Proc. IEEE, 106, 2209-2231(2018).

    [6] C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, K. J. Boller. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937-22961(2013).

    [7] R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, H. Albers. Silicon oxynitride planar waveguiding structures for application in optical communication. IEEE J. Sel. Top. Quantum Electron., 4, 930-937(1998).

    [8] A. Fernández Gavela, D. Grajales García, J. Ramirez, L. Lechuga. Last advances in silicon-based optical biosensors. Sensors, 16, 285(2016).

    [9] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [10] W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, J. K. S. Poon. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE, 106, 2232-2245(2018).

    [11] E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, M. R. Watts. AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer. Optical Fiber Communications Conference and Exposition, 1-3(2018).

    [12] Z. Fang, Q. Y. Chen, C. Z. Zhao. A review of recent progress in lasers on silicon. Opt. Laser Technol., 46, 103-110(2013).

    [13] D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, K. Bergman. Scaling silicon photonic switch fabrics for data center interconnection networks. Opt. Express, 23, 1159-1175(2015).

    [14] Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, K.-J. Boller. Optically integrated InP-Si3N4 hybrid laser. IEEE Photon. J., 8, 1505111(2016).

    [15] R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne. Low-noise erbium-doped fibre amplifier operating at 1.54  μm. Electron. Lett., 23, 1026-1028(1987).

    [16] C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan. High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm. Electron. Lett., 25, 910-911(1989).

    [17] Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, A. M. Vengsarkar. 80  nm ultra-wideband erbium-doped silica fibre amplifier. Electron. Lett., 33, 1965-1967(1997).

    [18] J. D. B. Bradley, M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photon. Rev., 5, 368-403(2011).

    [19] S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, M. Pollnau. Erbium-doped spiral amplifiers with 20  dB of net gain on silicon. Opt. Express, 22, 25993-26004(2014).

    [20] J. Mu, M. Dijkstra, S. M. García-Blanco. Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4. IEEE Photon. Technol. Lett., 31, 771-774(2019).

    [21] J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, S. M. García-Blanco. Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform. IEEE J. Sel. Top. Quantum Electron., 25, 8200911(2019).

    [22] , J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, M. R. Watts. C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. Opt. Lett., 38, 1760-1762(2013).

    [23] M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, D. J. Blumenthal. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform. Opt. Lett., 38, 4825-4828(2013).

    [24] M. Belt, D. J. Blumenthal. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. Opt. Express, 22, 10655-10660(2014).

    [25] E. S. Hosseini, , J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, M. R. Watts. CMOS-compatible 75  mW erbium-doped distributed feedback laser. Opt. Lett., 39, 3106-3109(2014).

    [26] , N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, M. R. Watts. Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Opt. Express, 25, 13705-13713(2017).

    [27] E. S. Magden, N. Li, , J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, L. A. Kolodziejski. Monolithically-integrated distributed feedback laser compatible with CMOS processing. Opt. Express, 25, 18058-18065(2017).

    [28] N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, M. R. Watts. Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers. Opt. Express, 26, 2220-2230(2018).

    [29] J. D. B. Bradley, E. S. Hosseini, , Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, M. R. Watts. Monolithic erbium-and ytterbium-doped microring lasers on silicon chips. Opt. Express, 22, 12226-12237(2014).

    [30] Z. Su, N. Li, E. S. Magden, M. Byrd, , T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, M. R. Watts. Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon. Opt. Lett., 41, 5708-5711(2016).

    [31] N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, M. R. Watts. Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform. Opt. Express, 26, 16200-16211(2018).

    [32] L. Wang, R. Guo, B. Wang, X. Wang, Z. Zhou. Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application. IEEE Photon. Technol. Lett., 24, 900-902(2012).

    [33] J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, Z. Sun. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun., 10, 432(2019).

    [34] R. A. H. El-Mallawany. Tellurite Glasses Handbook: Physical Properties and Data(2012).

    [35] V. A. G. Rivera, D. Manzani. Technological Advances in Tellurite Glasses: Properties, Processing, and Applications(2017).

    [36] J. S. Wang, E. M. Vogel, E. Snitzer. Tellurite glass: a new candidate for fiber devices. Opt. Mater., 3, 187-203(1994).

    [37] A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, J. Lousteau. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Prog. Mater. Sci., 57, 1426-1491(2012).

    [38] S. J. Madden, K. T. Vu. Very low loss reactively ion etched tellurium dioxide planar rib waveguides for linear and non-linear optics. Opt. Express, 17, 17645-17651(2009).

    [39] K. Vu, S. Madden. Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8  dB/cm internal gain. Opt. Express, 18, 19192-19200(2010).

    [40] K. Vu, S. Farahani, S. Madden. 980  nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band. Opt. Express, 23, 747-755(2015).

    [41] H. C. Frankis, K. Miarabbas Kiani, D. B. Bonneville, C. Zhang, S. Norris, R. Mateman, A. Leinse, N. D. Bassim, A. P. Knights, J. D. B. Bradley. Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits. Opt. Express, 27, 12529-12540(2019).

    [42] H. C. Frankis, K. Miarabbas Kiani, D. Su, R. Mateman, A. Leinse, J. D. B. Bradley. High-Q tellurium-oxide-coated silicon nitride microring resonators. Opt. Lett., 44, 118-121(2019).

    [43] S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang. Effect of OH-content on emission properties in Er3+-doped tellurite glasses. J. Non-Cryst. Solids, 354, 1357-1360(2008).

    [44] L. Agazzi, K. Wörhoff, M. Pollnau. Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+. J. Phys. Chem. C, 117, 6759-6776(2013).

    [45] Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. Hwang, J. Kim, H. Seo, N. Peyghambarian. Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass. J. Opt. Soc. Am. B, 18, 1928-1934(2001).

    [46] G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit. Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon. Appl. Phys. Lett., 68, 1886-1888(1996).

    CLP Journals

    [1] Neetesh Singh, Hamidu M. Mbonde, Henry C. Frankis, Erich Ippen, Jonathan D. B. Bradley, Franz X. Kärtner. Nonlinear silicon photonics on CMOS-compatible tellurium oxide[J]. Photonics Research, 2020, 8(12): 1904

    [2] Henry C. Frankis, Hamidu M. Mbonde, Dawson B. Bonneville, Chenglin Zhang, Richard Mateman, Arne Leinse, Jonathan D. B. Bradley. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain: erratum[J]. Photonics Research, 2020, 8(6): 1022

    [3] Jinfeng Mu, Meindert Dijkstra, Jeroen Korterik, Herman Offerhaus, Sonia M. García-Blanco. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration[J]. Photonics Research, 2020, 8(10): 1634

    Henry C. Frankis, Hamidu M. Mbonde, Dawson B. Bonneville, Chenglin Zhang, Richard Mateman, Arne Leinse, Jonathan D. B. Bradley. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain[J]. Photonics Research, 2020, 8(2): 127
    Download Citation