• Photonics Research
  • Vol. 9, Issue 12, 2435 (2021)
Qinghui Yan1、2, Qiaolu Chen1、2, Li Zhang1、2, Rui Xi1、2, Hongsheng Chen1、2、3、*, and Yihao Yang1、2、4、*
Author Affiliations
  • 1Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
  • 2International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
  • 3e-mail: hansomchen@zju.edu.cn
  • 4e-mail: yangyihao@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.438769 Cite this Article Set citation alerts
    Qinghui Yan, Qiaolu Chen, Li Zhang, Rui Xi, Hongsheng Chen, Yihao Yang. Unconventional Weyl exceptional contours in non-Hermitian photonic continua[J]. Photonics Research, 2021, 9(12): 2435 Copy Citation Text show less

    Abstract

    Unconventional Weyl points with topological charges higher than 1 can transform into various complex unconventional Weyl exceptional contours under non-Hermitian perturbations. However, theoretical studies of these exceptional contours have been limited to tight-binding models. Here, we propose to realize unconventional Weyl exceptional contours in photonic continua—non-Hermitian anisotropic chiral plasma, based on ab initio calculation by Maxwell’s equations. By perturbing in-plane permittivity, an unconventional Weyl point can transform into a quadratic Weyl exceptional ring, a type I Weyl exceptional chain with one chain point, a type II Weyl exceptional chain with two chain points, or other forms. Realistic metamaterials with effective constitutive parameters are proposed to implement these unconventional Weyl exceptional contours. Our work paves a way toward exploration of exotic physics of unconventional Weyl exceptional contours in non-Hermitian topological photonic continua.
    [i×igi×igT][EHJ]=ω[ε+iχiχμωp2][EHJ],

    View in Article

    (k×+iχω)μ1(k×+iχω)E+ωp2ggTE=ω2εE,

    View in Article

    H=HQWPδε,

    View in Article

    HQWP=(ky2kx2)σ32kxkyσ1sgn(χ)kzσ2,

    View in Article

    γ12+γ22+γ32=0,

    View in Article

    [+i×iωpgi×+iωpgT][EHJ]=ω[ε+iχiχμ1][EHJ].(A1)

    View in Article

    [k×iχωiωpg+k×+iχω+iωpg][EHJ]=ω[ε11][EHJ].(A2)

    View in Article

    (k×+iχω)2E+ωp2ggTE=ω2εE.(A3)

    View in Article

    (kz2+[ky2kxkykxkykx2]2χkzω[i+i])E=(ω2εχ2ω2ωp2)E,(A4)

    View in Article

    (kz2+[ky2kxkykxkykx2]2χkzωp[i+i])E=(2(1χ2)ωpδω+2χkzδω[i+i])E·(A5)

    View in Article

    HQWPkz2+[ky2kxkykxkykx2]12sgn(χ)kz[i+i]=(kz2+12kx2+12ky2)σ0+12(ky2kx2)σ3kxkyσ112sgn(χ)kzσ2,(A6)

    View in Article

    HQWPE=δωE+δεE,(A7)

    View in Article

    Qinghui Yan, Qiaolu Chen, Li Zhang, Rui Xi, Hongsheng Chen, Yihao Yang. Unconventional Weyl exceptional contours in non-Hermitian photonic continua[J]. Photonics Research, 2021, 9(12): 2435
    Download Citation