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Unconventional Weyl points with topological charges higher than 1 can transform into various complex uncon-
ventional Weyl exceptional contours under non-Hermitian perturbations. However, theoretical studies of these
exceptional contours have been limited to tight-binding models. Here, we propose to realize unconventional Weyl
exceptional contours in photonic continua—non-Hermitian anisotropic chiral plasma, based on ab initio
calculation by Maxwell’s equations. By perturbing in-plane permittivity, an unconventional Weyl point can
transform into a quadratic Weyl exceptional ring, a type I Weyl exceptional chain with one chain point, a
type II Weyl exceptional chain with two chain points, or other forms. Realistic metamaterials with effective con-
stitutive parameters are proposed to implement these unconventional Weyl exceptional contours. Our work paves
a way toward exploration of exotic physics of unconventional Weyl exceptional contours in non-Hermitian
topological photonic continua. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.438769

1. INTRODUCTION

A photonic Weyl point (WP) [1–14] is the linear point crossing
of two bands in three-dimensional (3D) momentum space. As
the sources or drains of the Berry flux with C � �1 (or
C � −1, where C is the Chern number) topological charges,
WPs are characterized by the helicoid surface states and the
discontinuous Fermi arcs at surface boundaries of photonic me-
dia [1–4,6,7]. Later studies have shown the charge-1 WP be-
longs to a big family; others include but are not limited to
quadratic Weyl points (QWPs, C � 2) [8,15–19], spin-1
WPs (C � 2) [17,20–22], charge-2 Dirac points (C � 2)
[17,20–22], triple WPs (C � 3) [8,23], and quadruple WPs
(C � 4) [24,25]. Members with C > 1 charges in the family
are generally dubbed the unconventional WPs.

The photonic WPs (conventional and unconventional) can
be realized in periodic, precisely engineered, artificial structures,
such as photonic crystals [5] and optical waveguide arrays [10],
or in photonic continua, such as magnetized semiconductors
[13] and metamaterials [12]. In comparison to the periodic
structures, the electrodynamics of continua is much simpler,
which significantly facilitates gaining deeper physical insights
into topological photonics. Besides, many interesting phenom-
ena associated with photonic Weyl media have been observed,

including chiral zero modes [26], robust surface states [8,9],
and topological self-collimations [19].

The recent rapid development of the non-Hermitian topo-
logical band theory [27–29] has brought researchers’ attentions
to the non-Hermitian generalizations of photonic WPs. For ex-
ample, under non-Hermitian perturbations, a conventional
WP can transform into a Weyl exceptional ring (WER), along
which the eigenmodes of two degenerate bands coalesce into
one, forming a ring of exceptional points [28]. Such WERs
are proposed to exist in periodic structures decorated with gain
or loss (e.g., non-Hermitian photonic crystals [30] and non-
Hermitian waveguide arrays [31]), and non-Hermitian con-
tinua (e.g., lossy magnetized plasma) [32,33]. Interestingly,
the WER preserves the topological charge as well as the sur-
face-wave Fermi arcs [29,32]. Besides, recent theoretical works
have suggested that the unconventional WP, under non-
Hermitian perturbations, can transform into various complex
one-dimensional closed exceptional contours, with the topo-
logical charges preserved [29]. Several tight-binding models
have been proposed to implement those unconventional excep-
tional contours [29,34]. However, in realistic photonic media,
such as photonic crystals and metamaterials, the modes are usu-
ally not tightly bound to any site; the band structures of pho-
tonic crystals have multiple Bragg scattering in most cases [35].

Research Article Vol. 9, No. 12 / December 2021 / Photonics Research 2435

2327-9125/21/122435-08 Journal © 2021 Chinese Laser Press

https://orcid.org/0000-0003-0249-0392
https://orcid.org/0000-0003-0249-0392
https://orcid.org/0000-0003-0249-0392
https://orcid.org/0000-0002-9229-0054
https://orcid.org/0000-0002-9229-0054
https://orcid.org/0000-0002-9229-0054
mailto:hansomchen@zju.edu.cn
mailto:hansomchen@zju.edu.cn
mailto:hansomchen@zju.edu.cn
mailto:yangyihao@zju.edu.cn
mailto:yangyihao@zju.edu.cn
mailto:yangyihao@zju.edu.cn
https://doi.org/10.1364/PRJ.438769


Therefore, it is important to establish a framework to study the
unconventional Weyl exceptional contours beyond the tight-
binding models, especially in the context of photonics.

Here, we study various unconventional Weyl exceptional
contours in photonic continua—non-Hermitian chiral plasma,
based on the first-principle Maxwell’s equations. Interestingly,
by considering various perturbations to the in-plane permittiv-
ity, including non-Hermitian biaxial perturbations, Hermitian
biaxial perturbations, and non-Hermitian non-reciprocal
perturbations, we obtain a 3D mapping to sketch all the
Hermitian/non-Hermitian generalizations of an unconven-
tional WP and, more specifically, a QWP. As shown in Fig. 1,
we systematically identify various forms of unconventional
Weyl exceptional contours, including the quadratic Weyl ex-
ceptional rings (QWERs), two separated WERs, and the Weyl
exceptional chains (WECs), denoted by the red and grey re-
gions and the critical boundary in between, respectively.
Among them, we focus on three special cases that are pinned
in certain planes by the pseudo-parity-time (pseudo-PT) sym-
metry, which are in-plane QWERs, type I WECs with one
chain point, and type II WECs with two chain points, respec-
tively, as underlined in Fig. 1. To implement the above three
cases, we then propose realistic metamaterials with effective
constitutive parameters.

2. QUADRATIC WEYL POINT IN HERMITIAN
ANISOTROPIC CHIRAL PLASMA

To realize unconventional Weyl exceptional contours, we start
by constructing a QWP, which is at the origin of the 3D
parameter space (see Fig. 1). We consider a piece of plasma
continua with the in-plane (in the xOy plane) conductivity de-
scribed by the lossless Drude model σ � iω2

p∕ω (ωp is the
plasma frequency) and consider chirality [36] to break all mir-
ror symmetries [37]. Then, using the auxiliary field method
[38–40], we have2
4 i∇× −ig
−i∇×
igT

3
5
2
4 E
H
J
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5 � ω

2
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−iχ μ

ω−2
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2
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H
J

3
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where ε, μ, and χ are permittivity, permeability, and chirality
tensors, respectively. E, H, and J are electric field, magnetic
field, and current density, respectively. g is a matrix denoting
in-plane conductivity, i.e., g � �1, 0; 0, 1; 0, 0�.

From Eq. (1) we can qualitatively calculate the photonic
bands of the continua. Without losing the generality, we set
ε � μ � ωp � 1 and χ � −0.4, and ∇ ∼ ik for the continua.
As a result in Fig. 2(a), a QWP exists at the k � 0 point at the
modified plasma frequency ω 0

p � ωp∕�1 − χ2�0.5. As it named,
the in-plane dispersion is quadratic, indicating that the photon
is effectively massive due to the sufficient light–matter interac-
tion with the electronic gas. The calculation of topological
charge also proves the QWP: we enclose the k � 0 point by
a small sphere in momentum space and calculate Wilson loops
for different polar angles of the sphere. As shown in Fig. 2(b), as
the angle varies from 0 to π, the accumulated phase is�4π for
the upper band of the point degeneracy (in red), indicating
C � �2 for χ < 0 (or C � −2 for χ > 0), which is consistent
with our understanding of the QWP.

3. UNCONVENTIONAL WEYL EXCEPTIONAL
CONTOURS IN NON-HERMITIAN ANISOTROPIC
CHIRAL PLASMA

With the Hermitian QWP on hand, we still need a strategy to
break the hermiticity for the Weyl exceptional contours.
Motivated by Ref. [41], we use the perturbative method to ex-
pand the band structure of QWP in the local momentum space
and see the variation of eigenfrequencies with the constitutive
parameters. We rewrite Eq. (1) as

−�k ×�iχω�μ−1�k ×�iχω�E� ω2
pggTE � ω2εE, (2)

Fig. 1. Unconventional Weyl exceptional contours in non-
Hermitian anisotropic chiral plasma, parameterized by the in-plane
permittivity. When the contour splits or not, the space is divided into
the red part, the gray part, and the boundary in between, correspond-
ing to the QWERs, two separated WERs, and the WECs. Underlined
are three special cases that pinned in planes by pseudo-PT symmetries:
in-plane QWERs, type I WECs with a single chain point, and type II
WECs with two chain points.

Fig. 2. Quadratic Weyl point in Hermitian anisotropic chiral plasma. (a) Isofrequency contour at the plasma frequency in the k space, where
QWP is at the k � 0 point. (b) Quadratic in-plane dispersion. (c) Linear out-of-plane dispersion. (d) As χ < 0, the accumulated Berry phase of the
circle over the sphere that encloses QWP is �4π for the upper band (in red), indicating C � �2.
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and set μ � 1 for simplicity. Due to the in-plane longitudin-
ality of the wave functions at the QWP (Ez � 0), we neglect
this component in Eq. (2). By perturbing both the wave vector
and the permittivity tensor, the local Hamiltonian around the
plasma frequency is (see more detail in Appendix A)

H � HQWP − δεk, (3)

where δεk is the (zeroth-order) perturbation of the in-plane per-
mittivity under Cartesian coordinates, and HQWP is the local
Hamiltonian of the QWP, i.e.,

HQWP � �k2y − k2x�σ3 − 2kxkyσ1 − sgn�χ�kzσ2, (4)

where σn, n � 1, 2, 3 are the Pauli matrices, and sgn�χ� gives
the sign of chirality.

Equation (3) bridges the local Hamiltonian and the constit-
utive parameters of the continua; by tuning the in-plane per-
mittivity, we perturb the local Hamiltonian to turn the QWP
into various quadratic Weyl exceptional contours. The pertur-
bation term can be decomposed by the four Pauli matrices with
complex coefficients, denoted as γnσn, where n � 0, 1, 2, 3,
and γn is complex. Therefore, there are eight degrees of freedom
in total, which we are going to discuss in the following text.

A. Hermitian Perturbations to the In-Plane
Permittivity
To analyze the Hermitian perturbations to the QWP, we refer
to the idea of topological photonics, which treats QWP as the
superposition of two WPs pinned by the rotational symmetry
[23,42]. Since the WP is robust against any Hermitian pertur-
bation, there are no other ways of evolution than to split the

QWP into twoWPs. More specifically, the γσ0 term (γ is a pos-
itive real number) performs a trivial perturbation that simply
changes the frequency of QWP. The γσ2 term shifts the QWP
along the kz direction, corresponding to the gyrotropic material
with a magnetic axis in the z direction that breaks the time-re-
versal (T ) symmetry. This partially explains why theQWP at the
Γ point is missing in previous works on magnetized plasmas
[32,33]. As for the γσ1 term (or γσ3 term, which is equivalent
by π∕4 rotation along the z axis), which is a biaxial anisotropic
one that breaks the continuous rotational symmetry along the z
direction (C∞z) down to twofold rotational symmetry C2z, the
QWP splits into two in-plane WPs as shown in Fig. 3(a).

B. Non-Hermitian Perturbations to the In-Plane
Permittivity
It has been known that the WER is the non-Hermitian gen-
eralization of a WP [28], the QWP is the superposition of
two identical WPs [23], and multiple WERs can touch and
emerge into one WER [29]. In the following, we will show
that the non-Hermitian generalization of a QWP can be a
single exceptional ring or two exceptional rings with various
connections.

We start the analysis with the iγσ0 term that corresponds to
the addition of an isotropic lossy term onto the permittivity.
The lossy term keeps the degeneracy of the QWP, even though
the eigenfrequency is complex. This can be understood
from the lossy Drude model, which does not lead to exceptional
contours at the plasma frequency.

For the iγσ2 term, as shown in Fig. 3(b), the twoWPs inside
the QWP expand into two identical WERs to form a QWER.

Fig. 3. Four typical cases evolving from the QWP. (a) TwoWPs, where εk � �1, 0.4; 0.4, 1�. (b) QWER, where εk � �1, 0.4; −0.4, 1�. (c) Type II
WEC, where εk � �1, 0.4i; 0.4i, 1�. (d) Type I WEC, where εk � �1, 0.4; 0, 1�. For each case we plot the exceptional contour, the band diagrams in
the slices indicated in the left panel, and the Wilson loop on a sphere covering the unconventional Weyl exceptional contours.
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Moreover, we find the C2zT symmetry acts as a pseudo-PT
symmetry in the kz � 0 plane. Given a mode labelled with
�kx , ky, kz ,ω�, the C2z symmetry maps the mode into another
mode labeled with �−kx , −ky, kz ,ω�, while the T symmetry
into �−k�x , −k�y , −k�z ,ω��. Thus, at the kz � 0 plane, C2zT
together maps �kx , ky, 0,ω� to �kx , ky, 0,ω��, which is identical
to the PT symmetry (we thus refer to it as the pseudo-PT
symmetry hereafter). Therefore, modes in the in-plane part
of the band are either in an exact-pseudo-PT phase where
eigenfrequencies are all real numbers, or in a broken-pseudo-
PT phase where bands are coupled in pairs with conjugate ei-
genfrequencies; the QWER lies at the boundary between two
phases. As shown in Fig. 3(b), the red circle is the exceptional
ring, and the red area is of broken-pseudo-PT phase.

For the iγσ1 term (or the iγσ3 term), as shown in Fig. 3(c),
the QWP transforms into two orthogonal WERs, which cross
with each other at two points along the kz axis. We thus refer to
it as the type II WEC. T symmetry no longer exists for this
material; instead are the C2xT and the C2yT symmetries
acting as pseudo-PT symmetries that pin the two WERs in the
kx � 0 plane and the ky � 0 plane, respectively. Moreover, two
WERs are related by C4zT, so we only plot one of them in
Fig. 3(c).

C. Unconventional Weyl Exceptional Contours in the
In-Plane Permittivity Parameter Space
Above, we have discussed all eight types of perturbations. Only
three of them lead to nontrivial deformations, i.e., Real�γ1�,
Imag�γ2�, and Imag�γ1�, where Real�·� and Imag�·� give the
real and imaginary parts of the input, respectively, as shown
in Table 1. The rest of the perturbations merely shift, rotate,
or tilt the contour that does not change the connection.
Therefore, we can study the unconventional Weyl exceptional
contours in a 3D parameter space corresponding to the in-plane
permittivity tensor. Recalling Fig. 1, besides the exceptional
contours along the three axes and the original point, we calcu-
late the exceptional contours for the remaining part of the space
and pick out three intermediate states between every two axes
to depict how the exceptional contour evolves as the in-plane
permittivity varies. Depending on whether the QWER splits
into two WERs or not [Real�γ1� − Imag�γ2� > 0 or <0],
the space can be divided into two regions (gray and red). At
the critical boundary [Real�γ1� − Imag�γ2� � 0], two WERs
are critically connected to form the WEC.

Besides the type II WEC, we find another interesting case
on the boundary, namely, the type I WEC, where the two

WERs are in the same plane (pinned by C2zT ) with only
one chain point at the k � 0 point (pinned by C2z) as shown
in Fig. 3(d) and the fifth column in Table 1. Due to the same
strength of perturbation by σ1 and iσ2, the perturbation term is
upper-triangular, which is the sign of exceptional structures.
Consequently, the in-plane permittivity is exceptional with co-
alesced eigenmodes at the chain point at the k � 0 point. In a
broader sense, the chain point is pinned at the k � 0 point if
and only if

γ21 � γ22 � γ23 � 0, (5)

where γ1,2,3 are complex numbers that should not be zero
simultaneously, otherwise, the perturbation term vanishes.

4. METAMATERIAL DESIGN TO ACHIEVE THE
UNCONVENTIONAL WEYL EXCEPTIONAL
CONTOURS

In the following, we design a metamaterial structure to imple-
ment the QWP, and then we add perturbations to the back-
ground permittivity to achieve the unconventional Weyl
exceptional contours. As shown in Fig. 4(a), the unit cell is cu-
boid with periods px � py � 7 mm, pz � 10 mm along the x,
y, and z directions, respectively. In each unit cell, there is a
metallic resonant structure made with 0.7 mm thickness rods.
The structure can be considered as the deformation of two in-
plane split-ring resonators, described by the Drude–Lorentz
model with a resonant frequency at about 6.3 GHz.
Besides, the slits of the split-ring resonators are offset from
the center point of the skeleton. In doing so, all mirror sym-
metries are broken, and the chirality is introduced. Here, the
structural parameters are d � 0.7 mm, hx � hy � 6.0 mm,
hz � 2.9 mm, and offset � 1.0 mm. The spatial group of
the unit cell is No. 89 (P422). Suppose the background
material has ε � 4 and μ � 1, and then at the Γ point
(k � 0), the third and the fourth bands intersect as a QWP.
Note that the QWP has been experimentally realized at micro-
wave [19] and infrared frequencies [15].

Then, by tuning the in-plane permittivity of the back-
ground material, different exceptional contours emerge as
predicted. As shown in Fig. 4(b), εxx � εyy � 4 and
εxy � −εyx � 0.5, i.e., the iγ2σ2 type, and thus the QWP ex-
pands into a QWER. Due to the C4 symmetry, the contour is
not a perfect circle. By breaking the C2x and C2y symmetries,
the magnetic spatial group falls down to No. 75.2 (P41 0).

Table 1. Variants of QWPWhen Introducing Perturbations to the In-Plane Permittivity, Where ε and γ are Real Numbersa

Contours Two WPs In-plane QWER Type II WEC Type I WEC
Figures Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)
Perturbations γσ1 iγσ2 iγσ1 γ�σ1 � iσ2�

εk

�
ε �γ
�γ ε

�

Hermitian
biaxial

�
ε �γ
−γ ε

�

Non-Hermitian
nonreciprocal

�
ε �iγ

�iγ ε

�

Non-Hermitian
biaxial

�
ε �2γ
0 ε

�

Non-Hermitian
exceptional

Symmetries T , C2z , C2zT T , C∞z , C2zT C4zT , C2xT , C2yT T , C2z , C2zT
aUnderlined are the pseudo-PT operators that respectively pin the exceptional contours in one of the kα � 0 planes, where α � x, y, z.
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As shown in Fig. 4(c), if we apply εxy � εyx � 0.5i to the
background media, i.e., the iγ1σ1 type, the QWP turns into a
type II WEC. Due to the strong anisotropy, the chain is greatly
pressed along the z direction. The magnetic spatial group is
No. 89.91 (P4 02 02).

As shown in Fig. 4(d), as εxy � 0.5 and εyx ≈ −0.06, the
QWP turns into a type I WEC that is pinned by the C2zT
symmetry with chain point at the k � 0 point. The in-plane
permittivity is slightly biased from upper-triangular, because k
is comparable to 2π∕px or 2π∕py (the length of the Brillouin
zone), and the nonlocal effect more or less induces higher-order
dispersions that twist the photonic bands. The effect is negli-
gible as the size of the Brillouin zone is finite. The magnetic
spatial group is No. 3.2 (P21 0).

Then, we fit the bulk bands of the metamaterials by the
continua model. As shown in Figs. 4(b)–4(d), in the vicinity
of the exceptional contours, we plot the fitting results by dashed
curves, with constitutive parameters ε � 4 and ωp � 2π ×
12.2GHz. Due to the magnetic resonance of the split-ring res-
onator, the permeability is greater than 1, i.e., μxx � μyy � 4,
μzz � 7. The chirality is χ � 0.7. One can observe that differ-
ent perturbations lead to different off-diagonal elements of the
effective permittivity tensor. Here, we have εxy � −εyx � −0.05
for the QWER, εxy � εyx � 0.04i for the type II WEC,
and εyx � −0.07 for the type I WEC.

At last, we note that all variants of QWP preserve the
C � �2 topological charge as verified by our first-principles
calculations as shown in Appendix B.

5. DISCUSSION

We have thus theoretically identified various unconventional
Weyl exceptional contours in the non-Hermitian photonic
continua, including the QWER, the type I WEC with one
chain point, and the type II WEC with two chain points.
Based on the Maxwell’s equations and the perturbative method,
we bridge the local Hamiltonian of unconventional Weyl ex-
ceptional contours with the constitutive parameters of the non-
Hermitian photonic continua. Several metamaterials with
effective constitutive parameters have been designed to imple-
ment the unconventional Weyl exceptional contours. Besides,
it would be interesting to investigate the directional amplifica-
tion based on the QWER with broken hermiticity and reci-
procity while preserving the T symmetry [43], and the
arbitrary gain/loss control of light polarization based on the
WEC with complex symmetric anisotropic permittivity [44].
With the recent rapid development in photonic metamaterials

]45–47 ], it is possible to experimentally implement those un-
conventional Weyl exceptional contours in the future. The
contours as well as the associated double surface Fermi arcs
(see Appendix B) should be experimentally observable

Fig. 4. Metamaterial designs to implement various unconventional Weyl exceptional contours. (a) Unit cell of metamaterial. The metallic struc-
ture (in gray) is designed to create in-plane resonance to introduce chirality. By switching the in-plane permittivity of the background material to
�4.0, 0.5; −0.5, 4.0�, �4.0, 0.5i; 0.5i, 4.0�, and �4.0, 0.5; −0.06, 4.0�, respectively, the third and the fourth bands intersect as (b) the QWER, (c) the
type II WEC, and (d) the type I WEC around 6.3 GHz in the vicinity of the Γ point, respectively. All exceptional contours are pinned inside one of
the kα � 0 planes by C2αT symmetries, where α � x, y, z. The gray area in the Brillouin zone in (b)–(d) covers the exceptional contour, where a
detailed band plot is given to show the real and imaginary parts of the eigenfrequencies. kx and ky are normalized by π∕px and π∕py , respectively. For
each case in (b)–(d), we fit the bulk bands by the continua model with effective constitutive parameters, plotted in dashed black curves in the vicinity
of the Γ point. Note that in (d), in-plane permittivity is not rigorously upper-triangular due to the nonlocal effect.
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[31,48], which can distinguish the quadratic Weyl exceptional
contours from their Hermitian counterpart. Finally, our work
sheds light on the exploration of exotic physics of unconven-
tional Weyl exceptional contours in non-Hermitian topological
photonic continua, such as non-Hermitian skin effect [49].

APPENDIX A: INTUITIVE DERIVATION ON THE
LOCAL HAMILTONIAN OF THE QUADRATIC
WEYL POINT AND THE PERTURBATION BY THE
PERMITTIVITY

The perturbed local Hamiltonian provides a brief formula to
estimate the variation of photonic bands caused by the variation
of constitutive parameters [41]. In our case, the local
Hamiltonian is an operator whose eigenvalues are the small var-
iations of angular frequencies in the vicinity of ω 0

p at the k � 0
point. To derive the local Hamiltonian of the quadratic Weyl
point, we first write down Maxwell’s equations with the aux-
iliary field

2
64

�i∇× −iωpg

−i∇×
�iωpgT

3
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J
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� ω
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75: (A1)

In a homogeneous material, ∇ ∼ ik. Suppose ε0 � μ0 � 1
and μ � 1, and move the chirality term to the left side:

2
4 −k × −iχω −iωpg
�k ×�iχω
�iωpg†

3
5
2
4 E
H
J

3
5

� ω

2
4 ε

1
1

3
5
2
4 E
H
J

3
5: (A2)

Rewrite Eq. (A2) in the form of Dψ � ωMψ . Then dou-
bling the operator M −1D for M −1DM −1Dψ � ω2ψ to decou-
ple the electric field and the magnetic field. Picking out the
electric part, we have

−�k ×�iχω�2E� ω2
pggTE � ω2εE: (A3)

As ε � 1, it is Eq. (2) in the main text.
If εk � 1, then at the k � 0 point around ω 0

p �
ωp∕�1 − χ2�0.5 there is a quadratic Weyl point, whose electric
field has no out-of-plane component, so we cancel Ez ,�

k2z �
�

k2y kxky
kxky k2x

�
− 2χkzω

�
−i

�i

��
Ek

� �ω2εk − χ2ω2 − ω2
p�Ek, (A4)

where the subscript k denotes the field and the tensor with it are
in-plane.

To derive the local Hamiltonian, supposing a small variation
of angular frequency δω from ω 0

p, we have

�
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�
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kxky k2x
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− 2χkzω 0
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pδω� 2χkzδω
�

−i
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In the vicinity of the k � 0 point, the line-crossed term is
small. By neglecting this term and other coefficients that do not
affect the topological properties, we have the local Hamiltonian
of the quadratic Weyl point

HQWP ∼ k2z �
� k2y −kxky
−kxky k2x

�
−
1

2
sgn�χ�kz

�
−i

�i

�

�
�
k2z �

1

2
k2x �

1

2
k2y

�
σ0 �

1

2
�k2y − k2x�σ3

− kxkyσ1 −
1

2
sgn�χ�kzσ2, (A6)

which is Eq. (4) in the main text.
As the perturbation term is added to the permittivity, the

variation of ω2εk on the right side of Eq. (A4) is δ�ω2εk� �
2ω 0

pδωεk � ω 02
pδεk, where the line-crossed term is nonzero.

Following the same procedure as above and neglecting some
coefficients, we have

HQWPEk � δωEk � δεkEk, (A7)

which leads to Eq. (3) in the main text.
Our intuitive derivation is equivalent to the rigorous degen-

erate-state perturbative method by auxiliary field method with
Maxwell’s equations [50].

APPENDIX B: TOPOLOGICAL CHARGE AND
FERMI ARCS OF THE QWP AND ITS VARIANTS
IN METAMATERIAL STRUCTURES

In this section, we perform first-principles calculations of the
metamaterial model to obtain the topological charges and the
Fermi arcs of the QWP and its non-Hermitian variants.

We first calculate the Chern numbers by the Wilson-loop
method. In each case, we enclose the QWP or the quadratic

Fig. 5. Evolution of Berry phases on the latitude circles of the
spheres enclosing (a) QWP, (b) QWER, (c) type II WEC, and
(d) type I WEC. As the polar angle varies from 0 to π, the accumulated
phases imply the topological charge C � �2.
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Weyl exceptional contours by a sphere and calculate the Berry
phases on different latitude circles. As the polar angle ranges
from 0 to π, the evolutions of Berry phases are shown in
Fig. 5. The accumulated Berry phases are�4π for all four cases,
indicating the topological charge C � �2.

Next, we calculate the surface Fermi arcs emanating from
the QWP and its variants. We note that the QWP in Fig. 4
is overlapped with the other trivial bands when projected to a
plane, leading to the difficulty to observe surface Fermi arcs.
Alternatively, we choose another structure proposed by us in
Ref. [19], which also features a QWP with C � �2 at the
Γ point. Based on the model in Ref. [19], we obtain the pro-
jected surface band structure along a closed curve enclosing the
Γ point as shown in Fig. 6. The two red lines in each panel
indicate the two surface Fermi arcs emanating from either
the QWP or its non-Hermitian variants.
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