• Acta Optica Sinica
  • Vol. 42, Issue 1, 0112002 (2022)
Zhibo Hao1、2、3, Huiqi Ye1、2、*, Liang Tang1、2, Jun Hao1、2、3, Jian Han1、2, Yang Zhai1、2, and Dong Xiao1、2
Author Affiliations
  • 1Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories of the Chinese Academy of Sciences, Nanjing, Jiangsu 210042, China;
  • 2Chinese Academy of Sciences Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing, Jiangsu 210042, China;
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202242.0112002 Cite this Article Set citation alerts
    Zhibo Hao, Huiqi Ye, Liang Tang, Jun Hao, Jian Han, Yang Zhai, Dong Xiao. Improvement of Wavelength Calibration Accuracy of Astronomical High-Resolution Spectrometers with Fabry-Perot Etalons[J]. Acta Optica Sinica, 2022, 42(1): 0112002 Copy Citation Text show less
    References

    [1] Steinmetz T, Wilken T, Araujo-Hauck C et al. Fabry-Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth[J]. Applied Physics B, 96, 251-256(2009).

    [2] Scharmer G B. Comments on the optimization of high resolution Fabry-Pérot filtergraphs[J]. Astronomy and Astrophysics, 447, 1111-1120(2006).

    [3] Nie X M, Long X W, Zhang B et al. 629 nm He-Ne laser using built-in Fabry-Perot etalon[J]. Acta Optica Sinica, 31, 0814004(2011).

    [4] Hu X, Cheng D J, Wang S B et al. Single-frequency Nd∶YVO4 laser based on reflective Bragg grating combined with Fabry-Perot etalon[J]. Acta Optica Sinica, 39, 0514002(2019).

    [5] Shen X Y, Lan X H, Zhu H N et al. Submicron displacement measurement method based on Fabry-Perot etalon[J]. Chinese Journal of Lasers, 46, 1204002(2019).

    [6] Xu Y. Design and realization of Fabry-Perot etalon for absolute distance measurement of femtosecond pulse laser[J]. Laser & Optoelectronics Progress, 58, 0114007(2021).

    [7] Pepe F A, Cristiani S, Lopez R R et al. ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations[J]. Proceedings of SPIE, 7735, 209-217(2010).

    [8] Fischer D A, Anglada-Escude G, Arriagada P et al. State of the field: extreme precision radial velocities[J]. Publications of the Astronomical Society of the Pacific, 128, 066001(2016).

    [9] Schmidt T M, Molaro P, Murphy M T et al. Fundamental physics with ESPRESSO: towards an accurate wavelength calibration for a precision test of the fine-structure constant[J]. Astronomy & Astrophysics, 646, A144(2021).

    [10] Wildi F, Pepe F, Chazelas B et al. A Fabry-Perot calibrator of the HARPS radial velocity spectrograph: Performance report[J]. Proceedings of SPIE, 7735, 1853-1863(2010).

    [11] Schäfer S, Reiners A. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared[J]. Proceedings of SPIE, 8446, 1306-1313(2012).

    [12] Cersullo F, Wildi F, Chazelas B et al. A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph[J]. Astronomy & Astrophysics, 601, A102(2017).

    [13] Tang L, Ye H Q, Hao J et al. Design and characterization of a thermally stabilized fiber Fabry-Perot etalon as a wavelength calibrator for high-precision spectroscopy[J]. Applied Optics, 60, D1-D8(2021).

    [14] Wildi F, Chazelas B, Pepe F. A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs[J]. Proceedings of SPIE, 8446, 84468E(2012).

    [15] Halverson S, Mahadevan S, Ramsey L et al. Development of fiber Fabry-Perot interferometers as stable near-infrared calibration sources for high resolution spectrographs[J]. Publications of the Astronomical Society of the Pacific, 126, 445-458(2014).

    [16] Gurevich Y V, Stürmer J, Schwab C et al. A laser locked Fabry-Perot etalon with 3 cm/s stability for spectrograph calibration[J]. Proceedings of SPIE, 9147, 91477M(2014).

    [17] Fan Z, Wang H J, Jiang X J et al. The Xinglong 2.16-m telescope: current instruments and scientific projects[J]. Publications of the Astronomical Society of the Pacific, 128, 115005(2016).

    [18] Buchhave L A. Detecting and characterizing transiting extrasolar planets[D]. Copenhagen: University of Copenhagen, 39-41(2010).

    [19] Redman S L, Nave G, Sansonetti C J. The spectrum of thorium from 250 nm to 5500 nm: Ritz wavelengths and optimized energy levels[J]. The Astrophysical Journal Letters Supplement Series, 211, 4(2014).

    [20] Bauer F F, Zechmeister M, Reiners A. Calibrating echelle spectrographs with Fabry-Pérot etalons[J]. Astronomy & Astrophysics, 581, A117(2015).

    [21] Wilken T, Curto G L, Probst R A et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level[J]. Nature, 485, 611-614(2012).

    [22] Probst R A. Milakovi D, Toledo-Padrón B, et al. A crucial test for astronomical spectrograph calibration with frequency combs[J]. Nature Astronomy, 4, 603-608(2020).

    [23] Wu Y J, Ye H Q, Han J et al. Astronomical laser frequency comb for high resolution spectrograph of a 2.16-m telescope[J]. Acta Optica Sinica, 36, 0614001(2016).

    [24] Hao Z B, Ye H Q, Han J et al. Calibration tests of a 25-GHz mode-spacing broadband astro-comb on the fiber-fed high resolution spectrograph (HRS) of the Chinese 2.16-m telescope[J]. Publications of the Astronomical Society of the Pacific, 130, 125001(2018).

    Zhibo Hao, Huiqi Ye, Liang Tang, Jun Hao, Jian Han, Yang Zhai, Dong Xiao. Improvement of Wavelength Calibration Accuracy of Astronomical High-Resolution Spectrometers with Fabry-Perot Etalons[J]. Acta Optica Sinica, 2022, 42(1): 0112002
    Download Citation