• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 6, 941 (2022)
Yong-Gang ZHANG1,2,*, Yi GU1,2, Ying-Jie MA1,2, Xiu-Mei SHAO1,2..., Xue LI1,2, Hai-Mei GONG1,2 and Jia-Xiong FANG1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Transducer Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.06.001 Cite this Article
    Yong-Gang ZHANG, Yi GU, Ying-Jie MA, Xiu-Mei SHAO, Xue LI, Hai-Mei GONG, Jia-Xiong FANG. The magic of III-Vs[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 941 Copy Citation Text show less
    References

    [1] J Bardeen, W H Brattain. The transistor, a semi-conductor triode. Physical Review, 74, 230-231(1948).

    [2] W H Brattain, J Bardeen. Nature of the forward current in Germanium point contacts. Physical Review, 74, 231-232(1948).

    [3] J Bardeen, W H Brattain. Physical principles involved in transistor action. Physical Review, 75, 1208-1225(1949).

    [4] W Shockley, G L Pearson. Modulation of conductance of thin films of semi-conductors by surface charges. Phys. Rev, 74, 232-233(1948).

    [5] W Shockley. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell System Technical Journal, 28, 435-489(1949).

    [6] H M Gong, X Li, Y G Zhang. InGaAs photodetectors and focal plane arrays.

    [7] Y G Zhang, Y Gu, X M Shao et al. Short-wave infrared InGaAs photodetectors and focal plane arrays. Chin. Phys. B, 27, 128102(2018).

    [8] I Vurgaftman, J R Meyer, L R Ram-Mohan. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys., 89, 5815-5875(2001).

    [9] R M Biefeld, K C Baucom, S R Kurtz et al. The growth of InP1-xSbx by metalorganic chemical vapor deposition. J. Cryst. Growth 1, 33, 38-46(1993).

    [10] S Loualiche, A Le Corre , S Salaun et al. GaPSb: A new ternary material for Schottky diode fabrication on InP. Appl. Phys. Lett, 59, 423-424(1991).

    [11] H Riechert, A Ramakrishnan, G Steinle. Development of InGaAsN-based 1.3 μm VCSELs. Semicon. Sci. Technol, 17, 892-897(2002).

    [12] X Yang, M J Jurkovic, J B Heroux et al. Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers. Appl. Phys. Lett, 75, 178-180(1999).

    [13] R Cheriton, M M Wilkins, P Sharma et al. Design optimizations of InGaAsN(Sb) subcells for concentrator photovoltaic systems. J. Vac. Sci. Technol. B, 34, 02M103(2016).

    [14] V F Degtyareva, M Winzenick, W B Holzapfel. Crystal structure of InBi under pressure up to 75 GPa. Physical Review B, 57, 4975-4978(1998).

    [15] M K Rajpalke, W M Linhart, K M Yu et al. Bi-induced band gap reduction in epitaxial InSbBi alloys. Appl. Phys. Lett, 105, 212101(2014).

    [16] A J Shalindar, P T Webster, B J Wilkens et al. Measurement of InAsBi mole fraction and InBi lattice constant using Rutherford backscattering spectrometry and X-ray diffraction. J. Appl. Phys, 120, 145704(2016).

    [17] S M Wang, P F Eds) Lu. Bismuth-containing alloys and nanostructures(2019).

    [18] X Y Chen, Y Gu, Y G Zhang et al. Characteristics of InGaAsBi with various lattice mismatches on InP substrate. AIP advances, 6, 075215(2016).

    [19] Y Gu, Y G Zhang, X Y Chen et al. Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP. Appl. Phys. Lett, 108, 032102(2016).

    [20] B Du, Y Gu, Y G Zhang et al. Wavelength extended InGaAsBi detectors with temperature-insensitive cutoff wavelength. Chin. Phys. Lett, 35, 078501(2018).

    [21] W Y Ji, Y Gu, Y G Zhang et al. InP-based pseudomorphic InAs/InGaAs triangular quantum well lasers with bismuth surfactant. Appl. Opt, 56, H10-H14(2017).

    [22] L F Dobrzhinetskaya, R Wirth, J Yang et al. E.S. (2013) Qingsongite, IMA 2013-030. CNMNC newsletter no. 16, August 2013, page 2708. Mineralogical Magazine, 77, 2695-2709(2013).

    [23] B Stone, D Hill. Semiconducting properties of cubic boron phosphide. Phys. Rev. Lett., 4, 282-284(1960).

    [24] R J Archer, R Y Koyama, E E Loebner et al. Optical absorption, electroluminescence, and the band gap of BP. Phys. Rev. Lett., 12, 538-540(1964).

    [25] S Yue, F Tian, X Y Sui et al. High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopy. Science, 377, 433-436(2022).

    [26] J W Shin, G A Gamage, Z W Ding et al. High ambipolar mobility in cubic boron arsenide. Science, 377, 437-440(2022).

    Yong-Gang ZHANG, Yi GU, Ying-Jie MA, Xiu-Mei SHAO, Xue LI, Hai-Mei GONG, Jia-Xiong FANG. The magic of III-Vs[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 941
    Download Citation