• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 2, 243 (2021)
Xin-Ke XU, Kang LONG, Jing-Xiang XU, Jun ZHAO, Dao-Dang WANG, Lu LIU, Wei LIU, Tian-Tai GUO, and Ming KONG*
Author Affiliations
  • College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.02.015 Cite this Article
    Xin-Ke XU, Kang LONG, Jing-Xiang XU, Jun ZHAO, Dao-Dang WANG, Lu LIU, Wei LIU, Tian-Tai GUO, Ming KONG. The method of dispersion cancellation based on the forward and reverse tuning of a laser frequency-modulated continuous wave system[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 243 Copy Citation Text show less
    References

    [1] J Zheng. Analysis of optical frequency-modulated continuous-wave interference. Appl. Opt., 43, 4189-4198(2004).

    [2] K Iiyama, S I Matsui, T Kobayashi et al. High-resolution fmcw reflectometry using a single-mode vertical-cavity surface-emitting laser. IEEE Photon. Technol. Lett., 23, 703-705(2011).

    [3] A B Mateo, Z W Barber. Precision and accuracy testing of FMCW ladar-based length metrology. Appl.Opt., 54, 6019-6024(2015).

    [4] T Hariyama, P A M Sandborn, M Watanabe et al. High-accuracy range-sensing system based on FMCW using low-cost VCSEL. Opt. Express, 26, 9285-9297(2018).

    [5] Z W Deng, Z G Liu, X Y Jia et al. Real-time dynamic absolute ranging with frequency scanning interferometry using a robust Monte-Carlo-based particle filter. Appl. Opt., 58, 6865-6872(2019).

    [6] X Jia, Z Liu, Z Deng et al. Dynamic absolute distance measurement by frequency sweeping interferometry based Doppler beat frequency tracking model. Opt. Commun., 430, 163-169(2019).

    [7] B Soller, D Gifford, M Wolfe et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express, 13, 666-674(2005).

    [8] J Dale, B Hughes, A J Lancaster et al. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells. Opt. Express, 22, 24869-24893(2014).

    [9] G Shi, F Zhang, X Qu et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications. Opt. Eng., 53, 12(2014).

    [10] G Shi, W Wang, F Zhang. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers. Opt. Commun., 411, 152-157(2018).

    [11] Z W Barber, W R Babbitt, B Kaylor et al. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar. Appl. Opt., 49, 213-219(2010).

    [12] P A Roos, R R Reibel, T Berg et al. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett., 34, 3692-3694(2009).

    [13] X K Xu, G D Liu, B G Liu et al. Research on the fiber dispersion and compensation in large-scale high-resolution broadband frequency modulated continuous wave laser measurement system. Opt. Eng., 54, 074102-1-074102-8(2015).

    [14] G D Liu, X K Xu, B G Liu et al. Dispersion compensation method based on focus definition evaluation functions for high-resolution laser frequency scanning interference measurement. Opt. Commun., 386, 7-64(2016).

    [15] C Lu, G D Liu, B G Liu et al. Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry. Opt. Express, 23, 31662-71(2015).

    [16] D Huang, E A Swanson, C P Lin et al. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [17] N Lippok, S Coen, P Nielsen et al. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Opt. Express, 20, 23398-23413(2012).

    [18] G P Agrawal. Nonlinear Fiber Optics, third ed(2001).

    [19] T J Ahn, J Y Lee, D Y Kim. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation. Appl. Opt., 44, 7630-7634(2005).

    [20] L Rabiner, R Schafer, C Radar. The ChirpZ transform algorithm. IEEE Transaction On Audio and Electro Acoustics, 17, 86-92(1969).

    Xin-Ke XU, Kang LONG, Jing-Xiang XU, Jun ZHAO, Dao-Dang WANG, Lu LIU, Wei LIU, Tian-Tai GUO, Ming KONG. The method of dispersion cancellation based on the forward and reverse tuning of a laser frequency-modulated continuous wave system[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 243
    Download Citation