• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021021 (2022)
Wei-Guo HUANG1、4, Yi GU1、2、3、4、*, Yu-Hang JIN2、3, Bo-Wen LIU2、3, Qian GONG1, Hua HUANG1, Shu-Min WANG5, Ying-Jie MA1、2、3, and Yong-Gang ZHANG1、2、3
Author Affiliations
  • 1Key Laboratory of Terahertz Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China
  • 2State Key Laboratory of Transducer Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 4University of Chinese Academy of Science,Beijing 100049,China
  • 5Department of Microtechnology and Nanoscience,Chalmers University of Technology,Gothenburg SE-41296,Sweden
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.019 Cite this Article
    Wei-Guo HUANG, Yi GU, Yu-Hang JIN, Bo-Wen LIU, Qian GONG, Hua HUANG, Shu-Min WANG, Ying-Jie MA, Yong-Gang ZHANG. InAs quantum wells grown on GaP/Si substrate with Ga(In,As)P metamorphic buffers[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021021 Copy Citation Text show less
    References

    [1] H L Wang, F Wang, H Xia et al. Direct observation and manipulation of hot electrons at room temperature. National Science Review(2020). https://doi.org/10.1093/nsr/nwaa295

    [2] W H Ran, L L Wang, S F Zhao et al. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Advanced Materials, 32, 1908419(2020).

    [3] M Sun, B C Yu, M Y Hong et al. Controlling the Facet of ZnO during Wet Chemical Etching Its (0001) O-Terminated Surface. Small, 16, 2007045(2020).

    [4] B Kumari, R K Varshney, B P Pal. Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band. Sensor. Actuat. B. Chem, 255, 3409-3416(2018).

    [5] E Delli, V Letka, P D Hodgson et al. Mid-Infrared InAs/InAsSb Superlattice nBn Photodetector Monolithically Integrated onto Silicon. Acs. Photonics, 6, 538-544(2019).

    [6] K E Jahromi, Q Pan, L Hogstedt et al. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing. Opt. Express, 27, 24469-24480(2019).

    [7] S Sergent, J C Moreno, E Frayssinet et al. GaN Quantum Dots Grown on Silicon for Free-Standing Membrane Photonic Structures. Appl. Phys. Express, 2, 051003(2009).

    [8] M Benyoucef, M Usman, J P Reithmaier. Bright light emissions with narrow spectral linewidths from single InAs/GaAs quantum dots directly grown on silicon substrates. Appl. Phys. Lett, 102, 132101(2013).

    [9] Y Halioua, A Bazin, P Monnier et al. Hybrid III-V semiconductor/silicon nanolaser. Opt. Express, 19, 9221-9231(2011).

    [10] E Tournie, L Cerutti, J B Rodriguez et al. Metamorphic III-V semiconductor lasers grown on silicon. Mrs. Bull, 41, 218-223(2016).

    [11] S Jung, J Kirch, J H Kim et al. Quantum cascade lasers transfer-printed on silicon-on-sapphire. Appl. Phys. Lett, 111, 211102(2017).

    [12] H Nguyen-Van, A N Baranov, Z Loghmari et al. Quantum cascade lasers grown on silicon. Sci. Rep, 8, 7206(2018).

    [13] D Jung, L Yu, D Wasserman et al. Mid-infrared electroluminescence from InAs type-I quantum wells grown on InAsP/InP metamorphic buffers. J. Appl. Phys, 118, 183101(2015).

    [14] D Jung, L Yu, S Dev et al. Design and growth of multi-functional InAsP metamorphic buffers for mid-infrared quantum well lasers on InP. J. Appl. Phys, 125, 082537(2019).

    [15] K Tanabe, K Watanabe, Y Arakawa. III-V/Si hybrid photonic devices by direct fusion bonding. Sci. Rep, 2, 349(2012).

    [16] L Qiang, L K May. Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics. Prog. Cryst. Growth Charact. Mater, 63, 105-120(2017).

    [17] H Liu. Silicon-Based III-V Quantum Dot Materials and Dsevices: 2018 Conference on Lasers and Electro-Optics Pacific Rim, 2018, 18635366(2018).

    [18] Y Hu, D Liang, K Mukherjee et al. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light. Sci. Appl, 8, 93(2019).

    [19] W Li, P Anantha, S Y Bao et al. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. Appl. Phys. Lett, 109, 241101(2016).

    [20] K Yamane, T Kawai, Y Furukawa et al. Growth of low defect density GaP layers on Si substrates within the critical thickness by optimized shutter sequence and post-growth annealing. J. Cryst. Growth, 312, 2179-2184(2010).

    [21] H Doescher, B Borkenhagen, G Lilienkamp et al. III-V on silicon: Observation of gallium phosphide anti-phase disorder by low-energy electron microscopy. Surf. Sci, 605, L38-L41(2011).

    [22] R M Kemper, T Schupp, M Haeberlen et al. Anti-phase domains in cubic GaN. J. Appl. Phys, 110, 123512(2011).

    [23] K Volz, A Beyer, W Witte et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J. Cryst. Growth, 315, 37-47(2011).

    [24] Y F Song, T Kujofsa, J E Ayers. Threading Dislocations in InGaAs/GaAs (001) Buffer Layers for Metamorphic High Electron Mobility Transistors. J. Electron. Mater, 47, 3474-3482(2018).

    [25] T Kujofsa, J E Ayers. Lattice relaxation and misfit dislocations in nonlinearly graded InxGa1-xAs/GaAs (001) and GaAs1-yPy/GaAs (001) metamorphic buffer layers. J. Vac. Sci. Technol. B, 32, 031205(2014).

    [26] K L Li, Y R Sun, J R Dong et al. Control of threading dislocations by strain engineering in GaInP buffers grown on GaAs substrates. Thin Solid Films, 593, 193-197(2015).

    [27] J Wu, Q Jiang, S M Chen et al. Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates. Acs Photonics, 3, 749-753(2016).

    [28] W G Huang, Y Gu, X Y Chen et al. Mid-infrared type-I InAs/In0.83Al0.17As quantum wells grown on GaP by gas source molecular beam epitaxy. J. Cryst. Growth, 512, 61-64(2019).

    [29] T Roesener, H Döscher, A Beyer et al. MOVPE growth of III-V solar cells on silicon in 300 mm closed coupled showerhead reactor: 25th European Photovoltaic Solar Energy Conf. and Exhibition, 2010, 2010, 964-968.

    [30] R S Goldman, H H Wieder, K L Kavanagh. Correlation of anisotropic strain relaxation with substrate misorientation direction at InGaAs/GaAs (001) interfaces. Appl. Phys. Lett, 67, 344(1995).

    [31] J E Ayers, S K Ghandhi, L J Schowalter. Crystallographic tilting of heteroepitaxial layers. J. Cryst. Growth, 113, 430-440(1991).

    [32] J-I Chyi, J-L Shieh, J-W Pan et al. Material properties of compositional graded InxGa1-xAs and InxAl1-xAs epilayers grown on GaAs substrates. J. Appl. Phys, 79, 8367(1996).

    [33] H P Lei, H Z Wu, Y F Lao et al. Difference of luminescent properties between strained InAsP/InP and strain-compensated InAsP/InGaAsP MQWs. J. Cryst. Growth, 256, 96-102(2003).

    [34] K W Park, C Y Park, S Ravindran et al. Effect of post-annealing process on the optical properties of lateral composition-modulated GaInP structure grown by molecular beam epitaxy. J. Mater. Sci, 49, 1034-1040(2014).

    [35] N J Quitoriano, E A Fitzgerald. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation. J. Appl. Phys, 102, 033511(2007).

    [36] L M McGill, E A Fitzgerald, J W Huang et al. Microstructural defects in metalorganic vapor phase epitaxy of relaxed, graded InGaP: Branch defect origins and engineering. Sci. Technol, 22, 1899(2004).

    [37] G B Stringfellow. Materials issues in high-brightness light-emitting diodes. Semiconductors and Semimetals, 48, 1-45(1997).

    Wei-Guo HUANG, Yi GU, Yu-Hang JIN, Bo-Wen LIU, Qian GONG, Hua HUANG, Shu-Min WANG, Ying-Jie MA, Yong-Gang ZHANG. InAs quantum wells grown on GaP/Si substrate with Ga(In,As)P metamorphic buffers[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021021
    Download Citation