• Laser & Optoelectronics Progress
  • Vol. 62, Issue 9, 0912004 (2025)
Zijin Deng1,2,3, Changwei Li1,2,3, and Sijiong Zhang1,2,3,*
Author Affiliations
  • 1Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, Jiangsu , China
  • 2Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, Jiangsu , China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP242091 Cite this Article Set citation alerts
    Zijin Deng, Changwei Li, Sijiong Zhang. Measurement of Lens Parameters Using a Shack-Hartmann Wavefront Sensor[J]. Laser & Optoelectronics Progress, 2025, 62(9): 0912004 Copy Citation Text show less
    Schematic diagrams of determining the position of the reference point. (a) (b) Focal point F of the lens away from point source S; (c) focal point F of the lens at the point source S
    Fig. 1. Schematic diagrams of determining the position of the reference point. (a) (b) Focal point F of the lens away from point source S; (c) focal point F of the lens at the point source S
    Schematic diagram of the focal length measurement
    Fig. 2. Schematic diagram of the focal length measurement
    Schematic diagram of the geometric relationship between the radii of the curvatures of the spherical waves at the rear principal plane of the lens and the front surface of the microlens array
    Fig. 3. Schematic diagram of the geometric relationship between the radii of the curvatures of the spherical waves at the rear principal plane of the lens and the front surface of the microlens array
    Schematic diagram of the reflection configuration for the radius of curvature measurement
    Fig. 4. Schematic diagram of the reflection configuration for the radius of curvature measurement
    Schematic diagram of the experimental setup for lens parameter measurements
    Fig. 5. Schematic diagram of the experimental setup for lens parameter measurements
    Experimental setup for measuring lens parameters
    Fig. 6. Experimental setup for measuring lens parameters
    Determination of the position of the reference point by the evaluation function LSSCS
    Fig. 7. Determination of the position of the reference point by the evaluation function LSSCS
    LSSCS changes with position coordinates around points za and zb
    Fig. 8. LSSCS changes with position coordinates around points za and zb
    Nominal focal length /mmNominal radius of curvature /mmNominal refractive index
    25.513.131.515
    38.319.691.515
    100.051.501.515
    Table 1. Parameters of the test lens
    Nominal focal length /mmMeasured value /mm
    25.525.7±0.2
    38.337.6±0.2
    100.0100.0±0.9
    Table 2. Measurement results of the focal length
    Nominal radius of curvature /mmMeasured value /mm
    13.1313.17±0.05
    19.6919.73±0.03
    Table 3. Measurement results of the radius of curvature
    Nominal refractive indexMeasured refractive index
    1.5151.513±0.004(f=25.5)
    1.5151.525±0.003(f=38.3)
    Table 4. Measurement results of the refractive index
    Focal length /mmError caused by the focal lengthError caused by the radii of the curvaturesError caused by the thickness
    250.00530.00170.0004
    500.00520.00280.0002
    1000.00520.00310.0001
    Table 5. Errors in the refractive index caused by uncertainties in the parameters
    Focal length /mmThickness /mmCalculated refractive index
    Nominal refractive index1.5168
    253.41.5179
    502.61.5175
    1002.21.5164
    Table 6. Refractive index calculated for lenses of different thicknesses
    Focal length of the microlens /mmError caused by the linear translation /mmError caused by the focal length of the microlens /mmError caused by the noise /mm
    50.130.190.06
    100.270.190.06
    200.540.190.06
    Table 7. Errors in the measurement of the focal length corresponding to different focal lengths of the microlens
    Number of subaperturesMeasured focal length /mm
    Mean value25.5±0.1
    62525.45
    57625.64
    52925.47
    48425.51
    44125.31
    Table 8. Measurement of the focal length using different numbers of subapertures
    Focal length /mmAppropriate defocus amount /mm
    250.9
    503.6
    10015.7
    Table 9. Appropriate defocus amount for measuing different focal lengths
    Zijin Deng, Changwei Li, Sijiong Zhang. Measurement of Lens Parameters Using a Shack-Hartmann Wavefront Sensor[J]. Laser & Optoelectronics Progress, 2025, 62(9): 0912004
    Download Citation