• Advanced Photonics
  • Vol. 5, Issue 4, 046002 (2023)
Yakun Le1、†, Xiongjian Huang1、2, Hao Zhang1, Zhihao Zhou1, Dandan Yang1, Bozhao Yin1, Xiaofeng Liu3, Zhiguo Xia1, Jianrong Qiu4, Zhongmin Yang1、2, and Guoping Dong1、*
Author Affiliations
  • 1South China University of Technology, School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, China
  • 2South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
  • 3Zhejiang University, School of Materials Science and Engineering, Hangzhou, China
  • 4Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • show less
    DOI: 10.1117/1.AP.5.4.046002 Cite this Article Set citation alerts
    Yakun Le, Xiongjian Huang, Hao Zhang, Zhihao Zhou, Dandan Yang, Bozhao Yin, Xiaofeng Liu, Zhiguo Xia, Jianrong Qiu, Zhongmin Yang, Guoping Dong. Transparent glassy composites incorporating lead-free anti-perovskite halide nanocrystals enable tunable emission and ultrastable X-ray imaging[J]. Advanced Photonics, 2023, 5(4): 046002 Copy Citation Text show less
    References

    [1] J. A. Rowlands. Material change for X-ray detectors. Nature, 550, 47-48(2017).

    [2] J. Pang et al. Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl., 11, 105(2022).

    [3] J. Jiang et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics, 16, 575-581(2022).

    [4] J. Perego et al. Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photonics, 15, 393-400(2021).

    [5] S. Cho et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light Sci. Appl., 9, 156(2020).

    [6] Q. Chen et al. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88-93(2018).

    [7] X. Huang et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics, 14, 82-88(2020).

    [8] H. Zhang et al. Reproducible X‐ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater., 33, 2102529(2021).

    [9] W. Ma et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Adv. Sci., 8, 2003728(2021).

    [10] J. Yuan et al. How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 13, 10281-10304(2021).

    [11] M. Li, Z. Xia. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev., 50, 2626-2662(2021).

    [12] S. Cheng et al. Ultrabright and highly efficient all‐inorganic zero‐dimensional perovskite scintillators. Adv. Opt. Mater., 9, 2100460(2021).

    [13] M. Hunyadi et al. Scintillator of polycrystalline perovskites for high‐sensitivity detection of charged‐particle radiations. Adv. Funct. Mater., 32, 2206645(2022).

    [14] B. Yang et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater., 31, 1904711(2019). https://doi.org/10.1002/adma.201904711

    [15] W. Zhu et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci. Appl., 9, 112(2020).

    [16] F. Zhang et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater., 34, 2204801(2022).

    [17] K. Han et al. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators. Adv. Mater., 34, 2110420(2022).

    [18] B. Li et al. Zero‐dimensional luminescent metal halide hybrids enabling bulk transparent medium as large‐area X‐ray scintillators. Adv. Opt. Mater., 10, 2102793(2022).

    [19] Q. Kong et al. Phase engineering of cesium manganese bromides nanocrystals with color-tunable emission. Angew. Chem. Int. Ed. Engl., 60, 19653-19659(2021).

    [20] K. Li et al. Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications. Nano Res., 15, 9368-9376(2022).

    [21] Y. Wang et al. Antiperovskites with exceptional functionalities. Adv. Mater., 32, 1905007(2020).

    [22] D. Han et al. Design of high-performance lead-free quaternary antiperovskites for photovoltaics via ion type inversion and anion ordering. J. Am. Chem. Soc., 143, 12369-12379(2021).

    [23] H. K. Singh et al. High-throughput screening of magnetic antiperovskites. Chem. Mater., 30, 6983-6991(2018).

    [24] J. Zheng et al. Antiperovskite K3OI for K-ion solid state electrolyte. J. Phys. Chem. Lett., 12, 7120-7126(2021). https://doi.org/10.1021/acs.jpclett.1c01807

    [25] N. Hoffmann et al. Superconductivity in antiperovskites. NPJ Comput. Mater., 8, 150(2022).

    [26] S. Tan et al. An antiperovskite compound with multifunctional properties: Mn3PdN. Int. J. Heat. Mass. Transf., 302, 122389(2021). https://doi.org/10.1016/j.jssc.2021.122389

    [27] S. Yan et al. Light-emitting diodes with manganese halide tetrahedron embedded in anti-perovskites. ACS Energy Lett., 6, 1901-1911(2021).

    [28] M. Kogia et al. High temperature shear horizontal electromagnetic acoustic transducer for guided wave inspection. Sensors, 16, 582(2016).

    [29] T. Fukuchi et al. Nondestructive inspection of thermal barrier coating of gas turbine high temperature components. IEEJ Trans. Electr. Electron. Eng., 11, 391-400(2016).

    [30] R. Kuhn et al. Measuring device for synchrotron X-ray imaging and first results of high temperature polymer electrolyte membrane fuel cells. J. Power Sources, 196, 5231-5239(2011).

    [31] F. Akitomo et al. Investigation of effects of high temperature and pressure on a polymer electrolyte fuel cell with polarization analysis and X-ray imaging of liquid water. J. Power Sources, 431, 205-209(2019).

    [32] Y. Wang et al. In situ high-pressure and high-temperature X-ray microtomographic imaging during large deformation: a new technique for studying mechanical behavior of multiphase composites. Geosphere, 7, 40-53(2011).

    [33] M. Yao et al. High-temperature stable FAPbBr3 single crystals for sensitive X-ray and visible light detection toward space. Nano Lett., 21, 3947-3955(2021). https://doi.org/10.1021/acs.nanolett.1c00700

    [34] V. S. Devahdhanush et al. Experimental heat transfer results and flow visualization of vertical upflow boiling in Earth gravity with subcooled inlet conditions: in preparation for experiments onboard the international space station. Int. J. Heat. Mass. Transf., 188, 122603(2022).

    [35] L. Shao et al. Broadband ultraviolet photodetectors based on cerium doped lead-free Cs3MnBr5 metal halide nanocrystals. ACS Sustain. Chem. Eng., 9, 4980-4987(2021). https://doi.org/10.1021/acssuschemeng.0c07911

    [36] Y. Wu et al. New photoluminescence hybrid perovskites with ultrahigh photoluminescence quantum yield and ultrahigh thermostability temperature up to 600 K. Nano Energy, 77, 105170(2020).

    [37] R. Baran, L. Valentin, S. Dzwigaj. Incorporation of Mn into the vacant T-atom sites of a BEA zeolite as isolated, mononuclear Mn: FTIR, XPS, EPR and DR UV-Vis studies. Phys. Chem. Chem. Phys., 18, 12050-12057(2016).

    [38] L. Q. Guan et al. All-inorganic manganese-based CsMnCl3 nanocrystals for X-ray imaging. Adv. Sci., 9, 2201354(2022). https://doi.org/10.1002/advs.202201354

    [39] S. Lv et al. Transition metal doped smart glass with pressure and temperature sensitive luminescence. Adv. Opt. Mater., 6, 1800881(2018).

    [40] S. Lin et al. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence. Light Sci. Appl., 9, 22(2020). https://doi.org/10.1038/s41377-020-0258-3

    [41] T. Jiang et al. Highly efficient and tunable emission of lead‐free manganese halides toward white light‐emitting diode and X‐ray scintillation applications. Adv. Funct. Mater., 31, 2009973(2021).

    [42] T. Ji et al. Ce3+‐doped yttrium aluminum garnet transparent ceramics for high‐resolution X‐ray imaging. Adv. Opt. Mater., 10, 2102056(2022).

    [43] H. Wei et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics, 10, 333-339(2016).

    [44] W. F. Wang et al. Sensitive X-ray detection and imaging by a scintillating lead(II)-based metal-organic framework. Chem. Eng. J., 430, 133010(2022).

    [45] M. Zhang et al. Oriented-structured CsCu2I3 film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging. Nano Lett., 21, 1392-1399(2021). https://doi.org/10.1021/acs.nanolett.0c04197

    [46] X. Ou et al. High-resolution X-ray luminescence extension imaging. Nature, 590, 410-415(2021).

    [47] L. Yi et al. A double-tapered fibre array for pixel-dense gamma-ray imaging. Nat. Photonics, 17, 494-500(2023).

    [48] A. K. Mehra. Trees correction matrices for d5 configuration in cubic symmetry. J. Chem. Phys., 48, 4384-4386(1968).

    [49] J. L. Rao, K. Purandar. Electronic absorption spectrum of Mn2+ ions doped in diglycine barium chloride monohydrate. Solid State Commun., 37, 983(1981). https://doi.org/10.1016/0038-1098(81)91200-X

    [50] F. Cao et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano, 14, 5183-5193(2020).

    [51] J. Jin et al. Zn2+ doping in organic manganese(II) bromide hybrid scintillators toward enhanced light yield for X‐ray imaging. Adv. Opt. Mater., 2300330(2023).

    [52] T. C. Wang et al. High thermal stability of copper-based perovskite scintillators for high-temperature X-ray detection. ACS Appl. Mater. Interfaces, 15, 23421-23428(2023).

    [53] X. Li et al. Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nat. Commun., 12, 3879(2021). https://doi.org/10.1038/s41467-021-24185-7

    Yakun Le, Xiongjian Huang, Hao Zhang, Zhihao Zhou, Dandan Yang, Bozhao Yin, Xiaofeng Liu, Zhiguo Xia, Jianrong Qiu, Zhongmin Yang, Guoping Dong. Transparent glassy composites incorporating lead-free anti-perovskite halide nanocrystals enable tunable emission and ultrastable X-ray imaging[J]. Advanced Photonics, 2023, 5(4): 046002
    Download Citation