• Journal of Inorganic Materials
  • Vol. 35, Issue 8, 847 (2020)
Haipeng JI1, Zongtao ZHANG1, Jian XU2, Setsuhisa TANABE2, Deliang CHEN1、*, and Rongjun XIE3、*
Author Affiliations
  • 1School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 2Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
  • 3School of Materials, Xiamen University, Xiamen 361000, China
  • show less
    DOI: 10.15541/jim20190554 Cite this Article
    Haipeng JI, Zongtao ZHANG, Jian XU, Setsuhisa TANABE, Deliang CHEN, Rongjun XIE. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847 Copy Citation Text show less
    References

    [1] L WANG, R J XIE, T SUEHIRO et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chemical Reviews, 118, 1951-2009(2018).

    [2] Z XIA, Q LIU. Progress in discovery and structural design of color conversion phosphors for LEDs. Progress in Materials Science, 84, 59-117(2016).

    [3] C C LIN, A MEIJERINK, R S LIU. Critical red components for next-generation white LEDs. Journal of Physical Chemistry Letters, 7, 495-503(2016).

    [4] Y HU, W ZHUANG, H YE et al. Preparation and luminescent properties of (Ca1-xSrx)S:Eu 2+ red-emitting phosphor for white LED. Journal of Luminescence, 111, 139-145(2005).

    [5] R J XIE, H T HINTZEN. Optical properties of (oxy)nitride materials: a review. Journal of the American Ceramic Society, 96, 665-687(2013).

    [6] P PUST, V WEILER, C HECHT et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu 2+ as a next-generation LED-phosphor material. Nature Materials, 13, 891-896(2014).

    [7] S SCHMIECHEN, H SCHNEIDER, P WAGATHA et al. Toward new phosphors for application in illumination-grade white pc-LEDs: the nitridomagnesosilicates Ca[Mg3SiN4]:Ce 3+, Sr[Mg3SiN4]:Eu 2+, and Eu[Mg3SiN4]. Chemistry of Materials, 26, 2712-2719(2014).

    [8] S ADACHI. Photoluminescence spectra and modeling analyses of Mn 4+-activated fluoride phosphors: a review. Journal of Luminescence, 197, 119-130(2018).

    [9] S ADACHI. Mn4+-activated red and deep red-emitting phosphors. ECS Journal of Solid State Science and Technology, 9, 016001-1-34(2020).

    [10] H F SIJBOM, R VERSTRAETE, J J JOOS et al. K2SiF6:Mn 4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives. Optical Materials Express, 7, 3332-3365(2017).

    [11] A G PAULUSZ. Efficient Mn(IV) emission in fluorine coordination. Journal of the Electrochemical Society, 120, 942-947(1973).

    [12] Y H LIU, W GAO, G T CHEN et al. Research progress and development trend of fluoride phosphor for white LED. China Light & Lighting, 20-24(2018).

    [13] R VERSTRAETE, H F SIJBOM, K KORTHOUT et al. K2MnF6 as a precursor for saturated red fluoride phosphors: the struggle for structural stability. Journal of Materials Chemistry C, 5, 10761-10769(2017).

    [14] Z ZHOU, N ZHOU, M XIA et al. Research progress and application prospects of transition metal Mn 4+-activated luminescent materials. Journal of Materials Chemitry C, 4, 9143-9161(2016).

    [15] Y Y ZHOU, L Y WANG, T T DENG et al. Recent advances in Mn 4+-doped fluoride narrow-band red-emitting phosphors. Scientia Sinica Technologica, 47, 1111-1125(2017).

    [16] S TIM. New Narrow Band Red Phosphors for White Light Emitting Diodes. Utrecht: Doctoral Dissertation of Utrecht University(2018).

    [17] Y TANABE, S SUGANO. On the absorption spectra of complex ions II. Journal of the Physical Society of Japan, 9, 766-779(1954).

    [18] M G BRIK, S J CAMARDELLO, A M SRIVASTAVA. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect. ECS Journal of Solid State Science and Technology, 5, R3067-R3077(2016).

    [19] M G BRIK, W W BEERS, W COHEN et al. On the Mn 4+ R-line emission intensity and its tunability in solids. Optical Materials, 91, 338-343(2019).

    [20] H JI, J UEDA, M G BRIK et al. Intense deep-red zero phonon line emission of Mn 4+ in double perovskite La4Ti3O12. Physical Chemistry Chemical Physics, 21, 25108-25117(2019).

    [21] T HU, H LIN, Y CHENG et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn 4+-activated oxyfluoride Na2WO2F4. Journal of Materials Chemistry C, 5, 10524-10532(2017).

    [22] P CAI, X WANG, H J SEO. Excitation power dependent optical temperature behaviors in Mn 4+ doped oxyfluoride Na2WO2F4. Physical Chemistry Chemical Physics, 20, 2028-2035(2018).

    [23] P CAI, L QIN, C CHEN et al. Luminescence, energy transfer and optical thermometry of a novel narrow red emitting phosphor: Cs2WO2F4:Mn 4+. Dalton Transcations, 46, 14331-14340(2017).

    [24] Q WANG, Z YANG, H WANG et al. Novel Mn 4+-activated oxyfluoride Cs2NbOF5:Mn 4+ red phosphor for warm white light- emitting diodes. Optical Materials, 85, 96-99(2018).

    [25] H MING, J ZHANG, L LIU et al. A novel Cs2NbOF5:Mn 4+ oxyfluoride red phosphor for light-emitting diode devices. Dalton Transcations, 47, 16048-16056(2018).

    [26] X DONG, Y PAN, D LI et al. A novel red phosphor of Mn 4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications. CrystEngComm, 20, 5641-5646(2018).

    [27] H KATO, Y TAKATA, M KOBAYASHI et al. Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn 4+. Frontiers in Chemistry, 6, 467(2018).

    [28] Z LIANG, Z YANG, H TANG et al. Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4:Mn 4+ for LED backlighting. Optical Materials, 90, 89-94(2019).

    [29] M G BRIK, A M SRIVASTAVA. A computation study of site occupancy in the commercial Mg28Ge7.55O32F15.04:Mn 4+ phosphor. Optical Materials, 54, 245-251(2016).

    [30] Q WANG, J LIAO, L KONG et al. Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F:Mn 4+ red phosphor for solid-state lighting. Journal of Alloys and Compounds, 772, 499-506(2019).

    [31] A M SRIVASTAVA, J F ACKERMAN. Synthesis and luminescence properties of Cs2NbOF5 and Cs2NbOCl5 with isolated [NbOX5] -2 (X=F -, Cl -) octahedra. Materials Research Bulletin, 26, 443-448(1991).

    [32] A M SRIVASTAVA, J F ACKERMAN. Synthesis and luminescence properties of barium niobium oxide fluoride (BaNbOF5) with isolated [NbOF5] 2- octahedra. Chemitry of Materials, 4, 1011-1013(1992).

    [33] P W BLESS, DREELE R B VON, E KOSTINER et al. Anion and cation defect structure in magnesium fluorogermanate. Journal of Solid State Chemistry, 4, 262-268(1972).

    [34] W W BEERS, D SMITH, W E COHEN et al. Temperature dependence (13-600 K) of Mn 4+ lifetime in commercial Mg28Ge7.55O32F15.04 and K2SiF6 phosphors. Optical Materials, 84, 614-617(2018).

    Haipeng JI, Zongtao ZHANG, Jian XU, Setsuhisa TANABE, Deliang CHEN, Rongjun XIE. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847
    Download Citation