• Photonics Research
  • Vol. 2, Issue 2, 75 (2014)
Lars Thylen1、2、3、* and and Lech Wosinski1、2
Author Affiliations
  • 1Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista, Sweden
  • 2Hewlett-Packard Laboratories, Palo Alto, California 94304, USA
  • 3Joint Research Center of Photonics of the Royal Institute of Technology (KTH) and Zhejiang University, Zhejiang University, Hangzhou 310058, China
  • show less
    DOI: 10.1364/PRJ.2.000075 Cite this Article Set citation alerts
    Lars Thylen, and Lech Wosinski. Integrated photonics in the 21st century[J]. Photonics Research, 2014, 2(2): 75 Copy Citation Text show less
    References

    [1] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38, 114-117(1965).

    [2]

    [3] L. Thylén, S. He, L. Wosinski, D. Dai. The Moore’s law for photonic integrated circuits. J. Zhejiang Univ. Sci. A, 7, 1961-1967(2006).

    [4] M. K. Smit, C. van Dam. PHASAR-based WDM-devices: Principles, design and applications. IEEE J. Sel. Top. Quantum Electron., 2, 236-250(1996).

    [5] K. Okamoto. Fundamentals, technology and applications of AWGs. Proceedings of 24th European Conference on Optical Communication(1998).

    [6] I. P. Kaminow, L. Thylén, T. Li, P. Holmstrom, L. Wosinski, A. E. Willner, B. Jaskorzynska, M. Naruse, T. Kawazoe, M. Ohtsu, M. Yan, M. Fiorentino, U. Westergren. Nanophotonics for low-power switches. Optical Fiber Telecommunications VI(2013).

    [7] G.-L. Bona, R. German, B. J. Offrein. SiON high-reffractive-index waveguide and planar lightwave circuits. IBM J. Res. Dev., 47, 239-249(2003).

    [8] L. Liu, Z. Han, S. He. Novel surface plasmon waveguide for high integration. Opt. Express, 13, 6645-6650(2005).

    [9] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508-511(2006).

    [10] P. Holmström, L. Thylén, A. Bratkovsky. Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss. Appl. Phys. Lett., 97, 073110(2010).

    [11] A. Bratkovsky, E. Ponizovskaya, S. Y. Wang, P. Holmstrom, L. Thylén, Y. Fu, H. Agren. A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss. Appl. Phys. Lett., 93, 193106(2008).

    [12] M. Z. Alam, J. Meier, J. S. Aitchison, M. Mojahedi. Super mode propagation in low index medium. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, JThD112(2007).

    [13] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics, 2, 496-500(2008).

    [14] D. Dai, S. He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express, 17, 16646-16653(2009).

    [15] Z. Wang, Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylén, S. He, L. Wosinski. Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, JThA017(2011).

    [16] F. Lou, Z. Wang, D. Dai, L. Thylén, L. Wosinski. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Appl. Phys. Lett., 100, 241105(2012).

    [17] F. Lou, L. Thylén, L. Wosinski. Hybrid plasmonic microdisk resonators for optical interconnect applications. Proc. SPIE, 8781, 87810X(2013).

    [18] F. Lou, D. Dai, L. Wosinski. Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler. Opt. Lett., 37, 3372-3374(2012).

    [19] F. Lou, D. Dai, L. Thylén, L. Wosinski. Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators. Opt. Express, 21, 20041-20051(2013).

    [20] Q. Xu, V. R. Almeida, R. R. Panepucci, M. Lipson. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett., 29, 1626-1628(2004).

    [21] R. Sun, P. Dong, N. Feng, C. Hong, J. Michel, M. Lipson, L. Kimerling. Horizontal single and multiple slot waveguides: optical transmission at λ = 1550  nm. Opt. Express, 15, 17967-17972(2007).

    [22] M. Yan, L. Thylén, M. Qiu. Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering. Opt. Express, 19, 3818-3824(2011).

    [23] M. Chacinski, U. Westergren, B. Stoltz, L. Thylén. Monolithically integrated DFB-EA for 100  Gb/s Ethernet. IEEE Electron Device Lett., 29, 1312-1314(2008).

    [24] K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, T. F. Krauss. Cascaded modulator architecture for WDM applications. Opt. Express, 20, 27420-27428(2012).

    [25] M. Ohtsu. Dressed Photons: Concepts of Light–Matter Fusion Technology(2014).

    [26] Y. Kubota, K. Nobusada. Exciton–polariton transmission in quantum dot waveguides and a new transmission path due to thermal relaxation. J. Chem. Phys., 134, 044108(2011).

    [27] P. Holmström, L. Thylén. Electro-optic switch based on near-field-coupled quantum dots. Opt. Express.

    [28] F. Wang, Y. R. Shen. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett., 97, 206806(2006).

    [29] L. Thylén. A comparison of optically and electronically controlled optical switches. Appl. Phys. A, 113, 249-256(2013).

    CLP Journals

    [1] Hong Wang, Ningning Yang, Limin Chang, Chaobiao Zhou, Shiyu Li, Meng Deng, Zhenwei Li, Qiang Liu, Chi Zhang, Zhiyong Li, Yi Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene[J]. Photonics Research, 2020, 8(4): 468

    [2] Yuxing Yang, Zhenzhen Xu, Xinhong Jiang, Yu He, Xuhan Guo, Yong Zhang, Ciyuan Qiu, Yikai Su. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer[J]. Photonics Research, 2018, 6(10): 965

    [3] Yong Zhang, Yu He, Qingming Zhu, Ciyuan Qiu, Yikai Su. On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk[J]. Photonics Research, 2017, 5(5): 521

    [4] Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 686