• Laser & Optoelectronics Progress
  • Vol. 53, Issue 6, 60004 (2016)
Yang Wei*, Mao Jiubing, and Feng Xiaojuan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.060004 Cite this Article Set citation alerts
    Yang Wei, Mao Jiubing, Feng Xiaojuan. Research Status and Developing Tread for Waveguide-Based Board-Level Optical Interconnects Technology[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60004 Copy Citation Text show less
    References

    [1] Yu Zhihua. Design and realization of waveguide-based chip-to-chip optical interconnection network[D]. Wuhan: Huazhong University of Science and Technology, 2010: 1-8.

    [2] Shao Kejie. Study and design of board level optical interconnect links[D]. Mianyang: Chinese Academy of Engineering Physics, 2009: 2-13.

    [3] Weng Shousong. The low-k dielectric and its equipment[J]. Equipment for Electronic Products Manufacturing, 2008, 160: 28-30.

    [4] Mai K, Paaske T, Jayasena N, et al.. Smart Memories: A modular reconfigurable architecture[C]. 27th Int Symp Computer Arehitecture, 2000: 161-171.

    [5] H B Bakoglu. Circuits, interconnections, and packaging for VLSI reading[M]. New Jersey: Addison-Wesley, 1990: 143-152.

    [6] R Ho, K Mai, M Horowitz. Efficienton-chip global interconnects[C]. VLSI Circuits, 2003: 271-274.

    [7] Zhang Yimo. Optics inter-connected network techniques[M]. Beijing: Electronics Industry Press, 2006: 4-5.

    [9] J W Goodman, F J Leonberger, S Y Kung, et al.. Optical interconnections for VLSI systems[J]. Proc of the IEEE, 1984, 72(7): 850-866.

    [10] D Agarwal. Optical interconnects to silicon chips using short pulses[D]. Stanford: USA Stanford University, 2002: 9-15.

    [11] M Karppinen. High bit-rate optical interconnects on printed wiring board[D]. Oulu: Oulu University, 2008: 16-20.

    [12] G M Jiang, S Baig, M R Wang. Tunable Optofluidic couplers for dynamic card-to-backplane optical interconnect[J]. Journal of Lightwave Technology, 2013, 31(24): 4135-4141.

    [13] R Pitwon, L Brusberg, H Schrder, et al.. Pluggable electro-optical circuit board interconnect based on embedded graded-index planar glass waveguides[J]. Journal of Lightwave Technology, 2015, 33(4): 741-754.

    [14] M Immonen, J Wu, H J Yan, et al.. Electro-optical backplane demonstrator with multimode polymer waveguides for board-to-board interconnects[C]. IEEE Electronics System-Integration Technology Conference, 2014: 1-6.

    [15] Jia Nana, Deng Chuanlu, Pang Fufei, et al.. Research on excimer laser etching technology for achieving optical waveguide end face[J]. Chinese J Lasers, 2015, 42(3): 0303012.

    [16] Shen Pokun, Chen Chinta, Chen Rueihung, et al.. Chip-level optical interconnects using polymer waveguide integrated with laser/PD on silicon[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1359-1362.

    [17] Cui Rong, Yang Xiaohong, Lü Qianqian, et al.. InGaAs/InP photodetector on SOI circuitry[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110003.

    [18] Chen Qiaoshan, Yang Lin. Optical routers for photonic networks-on-chip[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110005.

    [19] M Yun, S Cho, S K Kang, et al.. Ge-on-Si photodetector with novel metallization schemes for on-chip optical interconnect[C]. IEEE International Symposium on Consumer Electronics, 2015: 1-2.

    [20] T Sato, K Takeda, A Shinya, et al.. Photonic crystal lasers for chip-to-chip and on-chip optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 728-737.

    [21] B Ciftcioglu, J Gao, R Berman, et al.. Recent progress on 3-D integrated intra-chip free-space optical interconnect[C]. IEEE Optical Interconnects Conference, 2012: 56-57.

    [22] S Tang, R T Chen, L Garrett, et al.. Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors[J]. Journal of Lightwave Technology, 1994, 12(11): 1971-1975.

    [23] D V Plant, M B Venditti, E Laprise, et al.. 256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS[J]. Journal of Lightwave Technology, 2001, 19(8): 1093-1103.

    [24] B Dhoedt, P D Dobbelaere, J Blondelle, et al.. Monolithic integration of diffractive lenses with LED-arrays for board-to-board free space optical interconnect[J]. Journal of Lightwave Technology, 1995, 13(6): 1065-1073.

    [25] D J Goodwill, K E Devenport, H S Hinton. An ATM-based intelligent optical backplane using CMOS-SEED smart pixel arrays and free-space optical interconnect modules[J]. IEEE Journal of Selected Optics in Quantum Electronics, 1996, 2(1): 85-96.

    [26] M Vervaeke, C Debaes, B Volckaerts, et al.. Optomechanical Monte Carlo tolerancing study of a packaged free-space intra-MCM optical interconnect system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 988-996.

    [27] K Wang, A Nirmalathas, C Lim, et al.. High-speed reconfigurable free-space card-to-card optical interconnects[J]. IEEE Photonics Journal, 2012, 4(5): 1407-1419.

    [28] M Schneider, T Kühner, J Mohr, et al.. Fibers in printed circuit boards with passively aligned coupling[J]. Journal of Lightwave Technology, 2010, 28(15): 2121-2128.

    [29] S Kopetz, E Rabe, W J Kang, et al.. Polysiloxane optical waveguide layer integrated in printed circuit board[J]. Electronics Letters, 2004, 40(11): 668-669.

    [30] Y Ishii, S Koike, Y Arai, et al.. SMT-compatible large-tolerance "optobump" interface for interchip optical interconnections[J]. IEEE Transactions on Advanced Packaging, 2003, 26(2): 122-127.

    [31] Y Ishii, S Koike, Y Arai, et al.. SMT-compatible optical-I/O chip packaging for chip-level optical interconnects[C]. IEEE Electronic Components and Technology Conference, 2001: 870-875.

    [32] Y Ishii, N Tanaka, T Sakamoto, et al.. Fully SMT-compatible optical-I/O package with microlens array interface[J]. Journal of Lightwave Technology, 2003, 21(1): 275-280.

    [33] S Hiramatsu, T Mikawa. Optical design of active interposer for high-speed chip level optical interconnects[J]. Journal of Lightwave Technology, 2006, 24(2): 927-934.

    [34] M H Cho, H S Cho, S H Hwang, et al.. Optical interconnection schemes using micro-optic connectors for passive packaging in optical PCBs[C]. IEEE Electronic Components and Technology Conference, 2005: 1830-1834.

    [35] M H Cho, S H Hwang, H S Cho, et al.. High-coupling-efficiency optical interconnection using a 90°-bent fiber array connector in optical printed circuit boards[J]. IEEE Photonics Technology Letters, 2005, 17(3): 690-692.

    [36] K Nieweglowski, K J Wolter. Optical analysis of short-distance optical interconnect on the PCB-level[C]. Electronics System Integration Technology Conference, 2006: 392-397.

    [37] K Nieweglowski, K J Wolter. Novel optical transmitter and receiver for parallel optical interconnects on PCB-level[C]. 2nd Electronics System-Integration Technology Conference, 2008: 607-611.

    [38] K Nieweglowski, R Rieske, K J Wolter. Assembly requirements for multi-channel coupling micro-optics in board-level optical interconnect[C]. 3nd Electronics System-Integration Technology Conference, 2010: 1-6.

    [39] G L Bona, B J Offrein, U Bapst, et al.. Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board[C]. SPIE, 2004, 5453: 134-141.

    [40] A F Benner, M. Ignatowski, J A Kash, et al.. Exploitation of optical interconnects in future server architectures[J]. IBM Journal of Research and Development, 2005, 49(4.5): 755-775.

    [41] L Schares, J A Kash, F E Doany, et al.. Terabus: Terabit/second-class card-level optical interconnect technologies[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1032-1044.

    [42] J A Kash, F E Doany, L Schares, et al.. Chip-to-chip optical interconnects[C]. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 2006: OFA3.

    [43] O Liboiron-Ladouceur, C L Schow, P K Pepeljugoski, et al.. A 17 Gb/s, 200-meter multimode optical fiber link using CMOS analog ICs and silicon carrier packaging[C]. 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2006: 573-574.

    [44] F E Doany, C L Schow, C K Tsang, et al.. 300-Gb/s 24-channel bidirectional Si carrier transceiver optochip for board-level interconnects[C]. Electronic Components and Technology Conference, 2008: 238-243.

    [45] F E Doany, C L Schow, J A Kash, et al.. Waveguide-coupled parallel optical transceiver technology for Tb/s-class chip-to-chip data transmission[C]. SPIE, 2008, 6899: 68990V.

    [46] F E Doany, C L Schow, C W Baks, et al.. 160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers[J]. IEEE Transactions on Advanced Packaging, 2009, 32(2): 345-359.

    [47] F E Doany, B G Lee, C L Schow, et al.. Terabit/s-class 24-channel bidirectional optical transceiver module based on TSV Si carrier for board-level interconnects[C]. Electronic Components and Technology Conference, 2010: 58-65.

    [48] A V Rylyakov, C L Schow, J E Proesel, et al.. A 40-Gb/s, 850-nm, VCSEL-based full optical link[C]. Optical Fiber Communication Conference & Exposition, 2012, 27(6): 1-3.

    [49] M Karppinen, T Alajoki, A Tanskanen, et al.. Parallel optical interconnect between ceramic BGA packages on FR4 board using embedded waveguides and passive optical alignments[C]. Electronic Components and Technology Conference, 2006: 799-805.

    [50] L Brusberg, H Schrder, R Erxleben, et al.. Glass carrier based packaging approach demonstrated on a parallel optoelectronic transceiver module for PCB assembling[C]. Electronic Components and Technology Conference, 2010: 269-274.

    [51] H Schrder, L Brusberg, N Arndt-Staufenbiel, et al.. Advanced thin glass based photonic PCB integration[C]. Electronic Components and Technology Conference, 2012: 194-202.

    [52] L Brusberg, D Manessis, M Neitz, et al.. Development of an electro-optical circuit board technology with embedded single-mode glass waveguide layer[C]. Electronics System-Integration Conference, 2014: 1-5.

    [53] A L Glebov, M G Lee. 3D routing on optical boards[C]. 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2006: 22-23.

    [54] A L Glebov, M G Lee, S Aoki, et al.. Integrated waveguide micro-optic elements for 3D routing in board-level optical interconnect[C]. SPIE, 2006, 6126: 61260N.

    [55] Fu Kai. Research of optical interconnection waveguides for EOPCB[D]. Wuhan: Huazhong University of Science and Technology, 2005: 45-52.

    [56] Zhang Jin. Optical coupling in electrical-optical printed-circuit board[D]. Wuhan: Huazhong University of Science and Technology, 2008: 40-55.

    [57] Feng Xianghua. Study on the elements for optical interconnection[D]. Changsha: National University of Defense Technology, 2012: 52-68.

    [58] Feng Xianghua, Ji Jiarong, Dou Wenhua. Fabrication of modified polydimethylsiloxane and multimode optical waveguides[J]. Acta Optica Sinica, 2012, 32(5): 0531003.

    [59] Feng Xianghua, Ji Jiarong, Dou Wenhua. Bending loss of polysiloxane optical waveguides for optical interconnection[J]. Acta Optica Sinica, 2012, 32(8): 0823003.

    [60] Ni Wei. Research on soft lithography based short range optical interconnection[D]. Hangzhou: Zhejiang University, 2009: 39-91.

    [61] Wu Jinhua, M Immonen, Yan Huijuan, et al.. Application of multimode polymer waveguide in optical-electrical printed circuit board[J]. Electronics Process Technology, 2015, 36(5): 291-294.

    Yang Wei, Mao Jiubing, Feng Xiaojuan. Research Status and Developing Tread for Waveguide-Based Board-Level Optical Interconnects Technology[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60004
    Download Citation