• Microelectronics
  • Vol. 53, Issue 2, 286 (2023)
YANG Ke1, ZUO Shikai1, WANG Chen1, JIANG Jianhua2, and CHEN Chengying1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220097 Cite this Article
    YANG Ke, ZUO Shikai, WANG Chen, JIANG Jianhua, CHEN Chengying. Research Progress of Compact Models for Carbon Nanotube Field Effect Transistors[J]. Microelectronics, 2023, 53(2): 286 Copy Citation Text show less
    References

    [1] GUO J, LUNDSTROM M, DATTA S. Performance projections for ballistic carbon nanotube field-effect transistors [J]. Applied Physics Letters, 2002, 80(17): 3192-3194.

    [2] RAYCHOWDHURY A, MUKHOPADHYAY S, ROY K. A circuit-compatible model of ballistic carbon nanotube field-effect transistors [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004, 23(10): 1411-1420.

    [3] DWYER C, CHEUNG M, SORIN D J. Semi-empirical SPICE models for carbon nanotube FET logic [C] // 4th IEEE Conference on Nanotechnology. Munich, Germany. 2004: 386-388.

    [4] NATORI K, KIMURA Y, SHIMIZU T. Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor [J]. Journal of Applied Physics, 2005, 97(3): 034306.

    [5] DENG J, WONG H S P. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-part I: model of the intrinsic channel region [J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3186-3194.

    [6] DENG J, WONG H S P. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-part II: full device model and circuit performance benchmarking [J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3195-3205.

    [7] NAJARI M, FRéGONèSE S, MANEUX C, et al. Schottky barrier carbon nanotube transistor: compact modeling, scaling study, and circuit design applications [J]. IEEE Transactions on Electron Devices, 2010, 58(1): 195-205.

    [8] GELAO G, MARANI R, DIANA R, et al. A semiempirical SPICE model for n-type conventional CNTFETs [J]. IEEE Transactions on Nanotechnology, 2011, 10(3): 506-512.

    [9] WEI L, FRANK D J, CHANG L, et al. Noniterative compact modeling for intrinsic carbon-nanotube FETs: quantum capacitance and ballistic transport [J]. IEEE Transactions on Electron Devices, 2011, 58(8): 2456-2465.

    [10] LUO J, WEI L, LEE C S, et al. Compact model for carbon nanotube field-effect transistors including nonidealities and calibrated with experimental data down to 9-nm gate length [J]. IEEE Transactions on Electron Devices, 2013, 60(6): 1834-1843.

    [11] LEE C S, POP E, FRANKLIN A D, et al. A compact virtual-source model for carbon nanotube field-effect transistors in the sub-10-nm regime-part I intrinsic elements [J]. IEEE Transactions on Electron Devices, 2015, 62(9): 3061-3069.

    [12] LEE C S, POP E, FRANKLIN A D, et al. A compact virtual-source model for carbon nanotube field-effect transistors in the sub-10-nm regime - part II extrinsic elements, performance assessment, and design optimization [J]. IEEE Transactions on Electron Devices, 2015, 62(9): 3070-3078.

    [13] HU X, FRIEDMAN J. Closed-form model for dual-gate ambipolar CNTFET circuit design [C] // IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore, MD, USA. 2017: 1-4.

    [14] MAHDI M, HOSSAIN M, SAHA J K. Performance analysis of an empirical model of carbon nanotube field effect transistor [C] // International Conference on Innovation in Engineering and Technology (ICIET). Dhaka, Bangladesh. 2018: 1-6.

    [15] ZHANG Y, YANG T, YANG Y, et al. A small signal model for carbon nanotube field-effect transistor [C] // Asia-Pacific Microwave Conference (APMC). Kyoto, Japan. 2018: 366-368.

    [16] ZHANG Y, YANG Y, YANG T, et al. A compact physical drain current model of multitube carbon nanotube field effect transistor including diameter dispersion effects [J]. IEEE Transactions on Electron Devices, 2021, 68(2): 6571-6579.

    [17] PATIL N, LIN A, ZHANG J, et al. Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes [J]. IEEE Transactions on Nanotechnology, 2011, 10(4):744-750.

    [18] SOLOMON P M. Contact resistance to a one-dimensional quasi-ballistic nanotube/wire [J]. IEEE Electron Device Letters, 2011, 32(3): 246-248.

    [19] DENG J, WONG H S P. Modeling and analysis of planar-gate electrostatic capacitance of 1-D FET with multiple cylindrical conducting channels [J]. IEEE Transactions on Electron Devices, 2007, 54(9): 2377-2385.

    [20] AVOURIS P, APPENZELLER J, MARTEL R, et al. Carbon nanotube electronics and optoelectronics [J]. Proceed IEEE, 2003, 91(11): 1772-1784.

    [21] MANEUX C, GOGUET J, FRéGONèSE S, et al. Analysis of CNTFET physical compact model [C] // Proceed IEEE Int Conf DTIS Nanoscale Technol. Tunis, Tunisia. 2006: 40-45.

    [22] OSSAIMEE M I, GAMAL S H, KIRAH K A, et al. Ballistic transport in Schottky barrier carbon nanotube FETs [J]. Electronics Letters, 2008, 44(5): 336-337.

    [23] FREGONESE S, D'HONINCTHUN H C, GOGUET J, et al. Computationally efficient physics-based compact CNTFET model for circuit design [J]. IEEE Transactions on Electron Devices, 2008, 55(6): 1317-1327.

    [24] SINHA S, BALIJEPALLI A, CAO Y. Compact model of carbon nanotube transistor and interconnect [J]. IEEE Transactions on Electron Devices, 2009, 56(10): 2232-2242.

    [25] FREGONESE S, MANEUX C, ZIMMER T. A compact model for dual-gate one-dimensional FET: application to carbon-nanotube FETs [J]. IEEE Transactions on Electron Devices, 2011, 58(1): 206-215.

    [26] LUNDSTROM M. Elementary scattering theory of the Si MOSFET [J]. IEEE Electron Device Letters, 1997, 18(7): 361-363.

    [27] MICHETTI P, IANNACCONE G. Analytical model of one-dimensional carbon-based Schottky-barrier transistors [J]. IEEE Transactions on Electron Devices, 2010, 57(7): 1616-1625.

    [28] BEJENARI I, SCHROTER M, CLAUS M. Analytical drain current model for non-ballistic Schottky-barrier CNTFETs [C] // IEEE Solid-State Device Research Conference. Leuven, Belgium. 2017: 90-93.

    [29] JOACHIM K, JOERG A. Tunneling phenomena in carbon nanotube field-effect transistors [J]. Physica Status Solidi, 2008, 205(4): 679-694.

    [30] ZHU G, XING Z, LEE T S, et al. A compact model for undoped silicon-nanowire MOSFETs with Schottky-barrier source/drain [J]. IEEE Transactions on Electron Devices, 2009, 56(5): 1100-1109.

    YANG Ke, ZUO Shikai, WANG Chen, JIANG Jianhua, CHEN Chengying. Research Progress of Compact Models for Carbon Nanotube Field Effect Transistors[J]. Microelectronics, 2023, 53(2): 286
    Download Citation