• Journal of Semiconductors
  • Vol. 41, Issue 9, 092701 (2020)
Hongfan Zhu1, Mo Sha1、2, Huaping Zhao2, Yuting Nie1, Xuhui Sun1, and Yong Lei2
Author Affiliations
  • 1Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
  • 2Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano ® (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
  • show less
    DOI: 10.1088/1674-4926/41/9/092701 Cite this Article
    Hongfan Zhu, Mo Sha, Huaping Zhao, Yuting Nie, Xuhui Sun, Yong Lei. Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries[J]. Journal of Semiconductors, 2020, 41(9): 092701 Copy Citation Text show less
    References

    [1] C Zhang, Y Ma, X Zhang et al. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater, 3, 29(2020).

    [2] Q He, B Yu, Z Li et al. Density functional theory for battery materials. Energy Environ Mater, 2, 264(2019).

    [3] W Tu, Y Wen, C Ye et al. Phase transformation of lithium-rich oxide cathode in full cell and its suppression by solid electrolyte interphase on graphite anode. Energy Environ Mater, 3, 19(2020).

    [4] T Or, S W Gourley, K Kaliyappan et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2, 6(2020).

    [5] H Xu, C Peng, Y Yan et al. “All-in-one” integrated ultrathin SnS2@ 3D multichannel carbon matrix power high-areal–capacity lithium battery anode. Carbon Energy, 1, 276(2019).

    [6] W Shin, J Lu, X Ji. ZnS coating of cathode facilitates lean-electrolyte Li–S batteries. Carbon Energy, 1, 165(2019).

    [7] N Ding, S W Chien, T A Hor et al. Key parameters in design of lithium sulfur batteries. J Power Sources, 269, 111(2014).

    [8] A Manthiram, Y Fu, Y S Su. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res, 46, 1125(2013).

    [9] Y Zang, F Pei, J Huang et al. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium –sulfur batteries. Adv Energy Mater, 8, 1802052(2018).

    [10] S S Zhang. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J Power Sources, 231, 153(2013).

    [11] W J Chung, J J Griebel, E T Kim et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem, 5, 518(2013).

    [12] Y X Yin, S Xin, Y G Guo et al. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed, 52, 13186(2013).

    [13] L Chen, L L Shaw. Recent advances in lithium–sulfur batteries. J Power Sources, 267, 770(2014).

    [14] S R Chen, Y P Zhai, G L Xu et al. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochim Acta, 56, 9549(2011).

    [15] G Wang, Y Lai, Z Zhang et al. Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@ PEG-modified separator. J Mater Chem A, 3, 7139(2015).

    [16] J Park, B C Yu, J S Park et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv Energy Mater, 7, 1602567(2017).

    [17] H Li, L Sun, Y Zhang et al. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem, 26, 1276(2017).

    [18] T Gao, T Le, Y Yang et al. Effects of electrospun carbon nanofibers’ interlayers on high-performance lithium–sulfur batteries. Materials, 10, 376(2017).

    [19] Z Yuan, H J Peng, T Z Hou et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett, 16, 519(2016).

    [20] G Ma, Z Wen, Q Wang et al. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J Power Sources, 273, 511(2015).

    [21] T G Jeong, Y H Moon, H H Chun et al. Free standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries. ChemCommun, 49, 11107(2013).

    [22] K Zhang, F Qin, J Fang et al. Nickel foam as interlayer to improve the performance of lithium–sulfur battery. J Solid State Electrochem, 18, 1025(2014).

    [23] G Ma, Z Wen, J Jin et al. Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sources, 267, 542(2014).

    [24] R Singhal, S H Chung, A Manthiram et al. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J Mater Chem A, 3, 4530(2015).

    [25] Z Zhang, G Wang, Y Lai et al. Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries. J Power Sources, 300, 157(2015).

    [26] B P Williams, Y L Joo. Tunable large mesopores in carbon nanofiber interlayers for high-rate lithium sulfur batteries. J Electrochem Soc, 163, A2745(2016).

    [27] L Zeng, F Pan, W Li et al. Free-standing porous carbon nanofibers-sulfur composite for flexible Li–S battery cathode. Nanoscale, 6, 9579(2014).

    [28] Y S Su, A Manthiram. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun, 48, 8817(2012).

    [29] W Kong, L Yan, Y Luo et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv Funct Mater, 27, 1606663(2017).

    [30] X Wang, Z Wang, L Chen. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources, 242, 65(2013).

    [31] G Zhou, L Li, D W Wang et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater, 27, 641(2015).

    [32] G Liang, J Wu, X Qin et al. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium–sulfur battery. ACS Appl Mater Interfaces, 8, 23105(2016).

    [33] M Sha, H Zhang, Y Nie et al. Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J Mater Chem A, 5, 6277(2017).

    [34] M M Demir, I Yilgor, E Yilgor et al. Electrospinning of polyurethane fibers. Polymer, 43, 3303(2002).

    [35] L Wang, Y Yu, P Chen et al. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources, 183, 717(2008).

    [36] X Wang, Q Weng, X Liu et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett, 14, 1164(2014).

    [37] S Wang, K Zou, Y Qian et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li–S batteries. Carbon, 144, 745(2019).

    [38] N Hellgren, J Guo, C Såthe et al. Nitrogen bonding structure in carbon nitride thin films studied by soft X-ray spectroscopy. Appl Phys Lett, 79, 4348(2001).

    [39] J Xu, M Wang, N P Wickramaratne et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater, 27, 2042(2015).

    [40] T H Le, Y Yang, L Yu et al. Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J Appl Polym Sci, 133(2016).

    [41] J Pandey, P Prajapati, M R Shimpi et al. Studies of molecular structure, hydrogen bonding and chemical activity of a nitrofurantoin-L-proline cocrystal: a combined spectroscopic and quantum chemical approach. RSC Adv, 6, 74135(2016).

    Hongfan Zhu, Mo Sha, Huaping Zhao, Yuting Nie, Xuhui Sun, Yong Lei. Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries[J]. Journal of Semiconductors, 2020, 41(9): 092701
    Download Citation