• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2022001 (2022)
Xue LI1、2、*, Hai-Mei GONG1、2、**, Xiu-Mei SHAO1、2, Tao LI1、2, Song-Lei HUANG1、2, Ying-Jie MA1、2, Bo YANG1、2, Xian-Liang ZHU1、2, Yi GU1、2, and Jia-Xiong FANG1、2
Author Affiliations
  • 1State Key Laboratories of Transducer Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.009 Cite this Article
    Xue LI, Hai-Mei GONG, Xiu-Mei SHAO, Tao LI, Song-Lei HUANG, Ying-Jie MA, Bo YANG, Xian-Liang ZHU, Yi GU, Jia-Xiong FANG. Recent advances in short wavelength infrared InGaAs focal plane arrays[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2022001 Copy Citation Text show less
    References

    [1] M N Ettenherg, J Michael, Lange et al. A Room Temperature 640×512 Pixel Near-Infrared InGaAs Focal Plane Array. Proceedings of SPIE, 4028, 201-207(2000).

    [2] W Zhang, M Evans, W Huang et al. Mesa pixel isolation with low dark current for improved MTF performance in SWIR photodiode array applications. Proceedings of SPIE, 11002, 1100213(2019).

    [3] J Nazemi, R Brubaker. Small SWaP TEC-less SWIR camera with current mirror pixel and temperature dependent non-uniformity corrections. Proceedings of SPIE, 9819, 981902(2016).

    [4] R Fraenkel, E Berkowicz, L Bikov et al. Development of low-SWaP and low-noise InGaAs detectors. Proceedings of SPIE, 10177, 1017703(2017).

    [5] S Manda, R Matsumoto, S Saito et al. High-definition Visible-SWIR InGaAs Image Sensor using Cu-Cu Bonding of III-V to Silicon Wafer, 2019(2019).

    [6] K Song, J Lei, H Yuan et al. Development of A Hermetically Packaged 13m Pixel Pitch 6000-Element InGaAs Linear Array. Proceedings of SPIE, 10656, 106560K(2018).

    [7] M H Ettenberg, H Nguyen, C R Martin, M Lange. High resolution 1.3 megapixel extended wavelength InGaAs. Proceedings of SPIE, 10624, 1062404(2018).

    [8] E K Duerr, J P Frechette, A Mcintosh et al. Large-format image sensors based on custom Geiger-mode avalanche photodiode arrays. Proceedings of SPIE, 10729, 107290B(2018).

    [9] M Entwistle, M A Itzler, J Chen et al. Geiger-mode APD camera system for single-photon 3D LADAR imaging. Proceedings of SPIE, 8375, 83750D(2012).

    [10] Y Gu, Y G Zhang, K Wang et al. Effects of growth temperature and buffer scheme on characteristics of InP-based metamorphic InGaAs photodetectors. Journal of Crystal Growth, 378, 65-68(2013).

    [11] L Xue, S Huang, C Yu et al. Noise characteristics of short wavelength infrared InGaAs linear focal plane arrays. Journal of Applied Physics, 112, 013202-1(2012).

    [12] C Yu, X Li, B Yang et al. Noise Characteristics Analysis of Short Wave Infrared InGaAs Focal Plane Arrays. Infrared Physics & Technology, 85, 74-80(2017).

    [13] Y G Liu, Y J Ma, X Li et al. Surface leakage behaviors of 2.6 μm In0.83Ga0.17As photodetectors as a function of mesa etching depth. IEEE Journal of Quantum Electronics, 56, 4000406(2020).

    [14] Y J Ma, S Y Deng, J F Cheng et al. Towards Surface Leakage Free High Fill-Factor Extended Wavelength InGaAs Focal-Plane Arrays. IEEE Journal of Quantum Electronics, 55, 4200208(2019).

    [15] L H Wan, X M Shao, Y J Ma et al. Dark current and 1/f noise characteristics of In0.74Ga0.26As photodiode passivated by SiNx/Al2O3 bilayer. Infrared Physics & Technology, 109, 103389(2020).

    [16] Y J Ma, X Li, X M Shao et al. 320×256 Extended Wavelength InxGa1-xAs/InP Focal Plane Arrays: Dislocation Defect, Dark Signal and Noise. IEEE Journal of Selected Topics in Quantum Electronics, 28, 3800411(2022).

    [17] W He, X M Shao, Y J Ma et al. Broadband high quantμm efficiency InGaAs/InP focal plane arrays via accurate plasma thinning. Optics Letters, 44, 6037-6040(2019).

    [18] W He, X M Shao, Y J Ma et al. Ultra-low spectral reflectances of InP Mie resonators on an InGaAs/InP focal plane array. AIP advances, 10, 065233(2020).

    [19] Y Z Yu, Y J Ma, Y Gu et al. Mie-type surface texture-integrated visible and short-wave infrared InGaAs/InP focal plane arrays. ACS Applied Electronic Materials, 2, 2558-2564(2020).

    [20] D Sun, T Li, B Yang et al. Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating. Optics express, 27, 9447-9458(2019).

    [21] D Sun, B Feng, B Yang et al. Design and fabrication of an InGaAs focal plane array integrated with linear-array polarization grating. Optics Letters, 45, 1559-1562(2020).

    [22] A R Wichman, R E DeWames, E Bellotti. Three-dimensional numerical simulation of planar P+n heterojunction In0.53Ga0.47As photodiodes in dense arrays Part II: Modulation transfer function modeling. Proceedings of SPIE, 9070, 907004(2014).

    [23] L A Zhang, Y Xu, G F Song. Investigation of modulation transfer function in InGaAs photodetector small pitch array based on three-dimensional numerical analysis. Optical and Quantum Electronics, 52, 171(2020).

    [24] X Li, H J Tang, T Li et al. Crosstalk study of near infrared InGaAs detectors. Proceedings of SPIE, 9819, 98192A(2016).

    [25] G Baker, M Wilson, P Coulter. Development and results of NIR polarization camera. Proceedings of SPIE, 6567, 65671L(2007).

    [26] X Y Hu, X Wang, Z Y Ding et al. Research Progress in Integrated Polarization Infrared Detector and Image Processing. Proceedings of SPIE, 10697, 106974I(2018).

    Xue LI, Hai-Mei GONG, Xiu-Mei SHAO, Tao LI, Song-Lei HUANG, Ying-Jie MA, Bo YANG, Xian-Liang ZHU, Yi GU, Jia-Xiong FANG. Recent advances in short wavelength infrared InGaAs focal plane arrays[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2022001
    Download Citation