• Journal of Semiconductors
  • Vol. 40, Issue 1, 011802 (2019)
Hang Dong1、2, Huiwen Xue1、2, Qiming He1、2, Yuan Qin1、2, Guangzhong Jian1、2, Shibing Long1、2、3, and Ming Liu1、2
Author Affiliations
  • 1Key Laboratory of Microelectronic Devices & Integration Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1088/1674-4926/40/1/011802 Cite this Article
    Hang Dong, Huiwen Xue, Qiming He, Yuan Qin, Guangzhong Jian, Shibing Long, Ming Liu. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. Journal of Semiconductors, 2019, 40(1): 011802 Copy Citation Text show less
    References

    [1] J Millan, P Godignon, X Perpina et al. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron, 29, 2155(2014).

    [2]

    [3] T P Chow, I Omura, M Higashiwaki et al. Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors. IEEE Trans Electron Devices, 64, 856(2017).

    [4] S Fujita. Wide-bandgap semiconductor materials: For their full bloom. Jpn J Appl Phys, 54, 030101(2015).

    [5] M Higashiwaki, K Sasaki, A Kuramata et al. Development of gallium oxide power device. Phys Status Solidi A, 211, 21(2014).

    [6] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [7] N Ueda, H Hosono, R Waseda et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett, 70, 3561(1997).

    [8] E G Víllora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 270, 420(2004).

    [9] K N H Aida, H Takeda, N Aota et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 47, 8506(2008).

    [10] M Higashiwaki, K Konishi, K Sasaki et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 108, 133503(2016).

    [11] M Higashiwaki, K Sasaki, T Kamimura et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 103, 123511(2013).

    [12] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [13] W S Hwang, A Verma, H Peelaers et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 104, 203111(2014).

    [14] Z Hu, K Nomoto, W Li et al. Enhancement-mode Ga2O3 vertical Transistors with breakdown voltage > 1 kV. IEEE Electron Device Lett, 39, 869(2018).

    [15] K D Chabak, J P McCandless, N A Moser et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 39, 67(2018).

    [16] M H Wong, K Sasaki, A Kuramata et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 37, 212-215(2016).

    [17] H Zhou, M Si, S Alghamdi et al. High performance depletion/enhancement-mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 38, 103(2017).

    [18] Q He, W Mu, B Fu et al. Schottky barrier rectifier based on (100) β-Ga2O3 and its DC and AC characteristics. IEEE Electron Device Lett, 39, 556(2018).

    [19] K Sasaki, D Wakimoto, Q T Thieu et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 38, 783(2017).

    [20] K Konishi, K Goto, H Murakami et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 110, 103506(2017).

    [21] R Roy, V G Hill, E F Osborn. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 74, 719(1952).

    [22] H H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 140, A316(1965).

    [23] T C Lovejoy, E N Yitamben, N Shamir et al. Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100). Appl Phys Lett, 94, 081906(2009).

    [24] M Mohamed, C Janowitz, I Unger et al. The electronic structure of β-Ga2O3. Appl Phys Lett, 97, 211903(2010).

    [25] C Janowitz, V Scherer, M Mohamed et al. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 13, 085014(2011).

    [26] O Ueda, N Ikenag, K Koshi et al. Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process. Jpn J Appl Phys, 55, 1202B(2016).

    [27] F Mezzadri, G Calestani, F Boschi et al. Crystal structure and ferroelectric properties of epsilon-Ga2O3 films grown on (0001)-sapphire. Inorg Chem, 55, 2079(2016).

    [28] X Xia, Y Chen, Q Feng et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl Phys Lett, 108, 202103(2016).

    [29] M Slomski, N Blumenschein, P P Paskov et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 121, 235104(2017).

    [30] K Hoshikawa, E Oh, T Kobayashi et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 447, 36(2016).

    [31] S Yoshioka, H Hayashi, A Kuwabara et al. Structures and energetics of Ga2O3 polymorphs. J Phys-Condens Mat, 19, 346211(2007).

    [32] J Åhman, G Svensson, J Albertsson. A reinvestigation of beta-gallium oxide. Acta Crystallogr C, 52, 1336(1996).

    [33] A Janotti, C G Van de Walle. Oxygen vacancies in ZnO. Appl Phys Lett, 87, 122102(2005).

    [34] T Oshima, K Kaminaga, A Mukai et al. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. Jpn J Appl Phys, 52, 051101(2013).

    [35] J B Varley, J R Weber, A Janotti et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 97, 142106(2010).

    [36] Z Hajnal, J Miró, G Kiss et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 86, 3792(1999).

    [37] J G M Fleischer, H Meixner. H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems. Appl Phys A, 54, 560(1992).

    [38] F B C K A F M F C Kohl. Decomposition of methane on polycrystalline thick films of Ga2O3 investigated by thermal desorption spectroscopy with a mass spectrometer. Fresenius J Ana Chem, 358, 187(1997).

    [39] M F T Schwebel, H Meixner, C D Kohl. CO-sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens Actuators B Chem, 49, 46(1998).

    [40] K H M Ogita, Y Nakanishi, Y Hatanaka. Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci, 175, 721(2001).

    [41] Z Guo, A Verma, X Wu et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl Phys Lett, 106, 111909(2015).

    [42] M Handwerg, R Mitdank, Z Galazka et al. Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond Sci Tech, 30, 024006(2015).

    [43] M D Santia, N Tandon, J D Albrecht. Lattice thermal conductivity in β-Ga2O3 from first principles. Appl Phys Lett, 107, 041907(2015).

    [44]

    [45]

    [46] N Ma, N Tanen, A Verma et al. Intrinsic electron mobility limits in β-Ga2O3. Appl Phys Lett, 109, 212101(2016).

    [47] T Oishi, Y Koga, K Harada et al. High-mobility β-Ga2O3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 8, 031101(2015).

    [48] M Higashiwaki, A Kuramata, H Murakami et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 50, 333002(2017).

    [49] C Tang, J Sun, N Lin et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study. RSC Adv, 6, 78322(2016).

    [50] H Peelaers, C G Van de Walle. Brillouin zone and band structure of β-Ga2O3. Phys Status Solidi B, 252, 828(2015).

    [51] H von Wenckstern. Group-III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 3, 1600350(2017).

    [52] K Sasaki, M Higashiwaki, A Kuramata et al. MBE grown Ga2O3 and its power device applications. J Crys Growth, 378, 591(2013).

    [53] M H Wong, Y Morikawa, K Sasaki et al. Characterization of channel temperature in Ga2O3 metal–oxide–semiconductor field-effect transistors by electrical measurements and thermal modeling. Appl Phys Lett, 109, 193503(2016).

    [54]

    [55] A J Green, K D Chabak, E R Heller et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 37, 902(2016).

    [56] M H Wong, Y Nakata, A Kuramata et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 10, 041101(2017).

    [57]

    [58]

    [59] A J Green, K D Chabak, M Baldini et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 38, 790(2017).

    [60] S Krishnamoorthy, Z Xia, S Bajaj et al. Delta-doped β-gallium oxide field-effect transistor. Appl Phys Express, 10, 051102(2017).

    [61] Z Xia, C Joishi, S Krishnamoorthy et al. Delta doped β-Ga2O3 field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett, 39, 568(2018).

    [62]

    [63] S Ahn, F Ren, J Kim et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 109, 062102(2016).

    [64] J Bae, H W Kim, I H Kang et al. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate. Appl Phys Lett, 112, 122102(2018).

    [65] H Zhou, K Maize, G Qiu et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 111, 092102(2017).

    [66] H Zhou, S Alghamdi, S W Si et al. Al2O3/β-Ga2O3 (-201) interface improvement through piranha pretreatment and postdeposition annealing. IEEE Electron Device Lett, 37, 1411(2016).

    [67] T Kamimura, D Krishnamurthy, A Kuramata et al. Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3 (010) and its suppressed interface state density. Jpn J Appl Phys, 55, 1202B(2016).

    [68] M Hattori, T Oshima, R Wakabayashi et al. Epitaxial growth and electric properties of γ-Al2O3 (110) films on β-Ga2O3 (010) substrates. Jpn J Appl Phys, 55, 1202B(2016).

    [69] K Zeng, Y Jia, U Singisetti. Interface state density in atomic layer deposited SiO2/β-Ga2O3 MOSCAPs. IEEE Electron Device Lett, 37, 906(2016).

    [70] K Zeng, U Singisetti. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations. Appl Phys Lett, 111, 122108(2017).

    [71] H Dong, W Mu, Y Hu et al. C–V and J–V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (100) β-Ga2O3. AIP Adv, 8, 065215(2018).

    [72] M A Bhuiyan, H Zhou, R Jiang et al. Charge trapping in Al2O3/β-Ga2O3 based MOS capacitors. IEEE Electron Device Lett, 39, 1022(2018).

    [73] Y Yao, R F Davis, L M Porter. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties. J Electron Mater, 46, 2053(2016).

    [74] N A Moser, J P McCandless, A Crespo et al. High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 110, 143505(2017).

    [75] K Sasaki, Q T Thieu, D Wakimoto et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express, 10, 124201(2017).

    [76] K Zeng, J S Wallace, C Heimburger et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 38, 513(2017).

    Hang Dong, Huiwen Xue, Qiming He, Yuan Qin, Guangzhong Jian, Shibing Long, Ming Liu. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. Journal of Semiconductors, 2019, 40(1): 011802
    Download Citation