• Laser & Optoelectronics Progress
  • Vol. 58, Issue 21, 2116002 (2021)
Ting Zhang*, Ting Zhang*, Sen Yang, Sen Yang, XinYing Yu, XinYing Yu
Author Affiliations
  • Shanxi Vocational University of Engineering Science and Technology, Jinzhong , Shanxi 030619, China
  • show less
    DOI: 10.3788/LOP202158.2116002 Cite this Article Set citation alerts
    Ting Zhang, Ting Zhang, Sen Yang, Sen Yang, XinYing Yu, XinYing Yu. Tunable Broadband Terahertz Perfect Absorber Design Based on Vanadium Dioxide[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2116002 Copy Citation Text show less
    References

    [1] Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013).

    [2] Kurt H, Citrin D S. Photonic crystals for biochemical sensing in the terahertz region[J]. Applied Physics Letters, 87, 041108(2005).

    [3] Ouchi T, Kajiki K, Koizumi T et al. Terahertz imaging system for medical applications and related high efficiency terahertz devices[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 35, 118-130(2014).

    [4] Federici J F, Schulkin B, Huang F et al. THz imaging and sensing for security applications: explosives, weapons and drugs[J]. Semiconductor Science and Technology, 20, S266-280(2005).

    [5] Yan X W, Ren L Y, Yang L et al. Broadband filter based on high-precision microtapered long-period fiber gratings[J]. Laser & Optoelectronics Progress, 57, 190605(2020).

    [6] Xiong R H, Li J S. Double-layer frequency selective surface for terahertz bandpass filter[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 39, 1039-1046(2018).

    [7] Li X, Yang L Y, Hu C G et al. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency[J]. Optics Express, 19, 5283-5289(2011).

    [8] Tao H, Bingham C M, Strikwerda A C et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Physical Review B, 78, 241103(2008).

    [9] Yao G, Ling F R, Yue J et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 24, 1518-1527(2016).

    [10] Fang B, Li B Y, Peng Y D et al. Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure[J]. Microwave and Optical Technology Letters, 61, 2385-2391(2019).

    [11] Song Z Y, Wang K, Li J W et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J]. Optics Express, 26, 7148-7154(2018).

    [12] Cong L Q, Cao W, Zhang X Q et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 103, 171107(2013).

    [13] Chiang Y J, Yen T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission[J]. Applied Physics Letters, 102, 011129(2013).

    [14] Wang S X, Garet F, Lheurette É et al. Giant rotary power of a fishnet-like metamaterial[J]. APL Materials, 1, 032116(2013).

    [15] Strikwerda A C, Fan K B, Tao H et al. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies[J]. Optics Express, 17, 136-149(2009).

    [16] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [17] Tao H, Landy N I, Bingham C M et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Optics Express, 16, 7181-7188(2008).

    [18] Yang S, Yuan S, Wang J Y. Light-excited and switchable dual-band terahertz metamaterial absorber[J]. Acta Optica Sinica, 41, 0216001(2021).

    [19] Song Z Y, Chen A, Zhang J H. Terahertz switching between broadband absorption and narrowband absorption[J]. Optics Express, 28, 2037-2044(2020).

    [20] Zhang N C, Wang P, Hua X et al. Optical radiation characteristics and structural phase transition of sapphire under megabar pressure[J]. Acta Optica Sinica, 39, 0730002(2019).

    [21] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [22] Zhai Z C, Zhang L, Li X J et al. Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array[J]. Optics Communications, 431, 199-202(2019).

    [23] Ji H Y, Zhang B, Wang G C et al. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure[J]. Optics Communications, 412, 37-40(2018).

    [24] Song Z Y, Wang Z S, Wei M L. Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces[J]. Materials Letters, 234, 138-141(2019).

    [25] Wang R X, Li L, Liu J L et al. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal[J]. Optics Express, 25, 32280-32289(2017).

    [26] Jepsen P U, Fischer B M, Thoman A et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy[J]. Physical Review B, 74, 205103(2006).

    [27] Wang S X, Cai C F, You M H et al. Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study[J]. Optics Express, 27, 19436-19447(2019).

    [28] Song Z Y, Wei M L, Wang Z S et al. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 11, 1-7(2019).

    [29] Zhou R H, Jiang T T, Peng Z et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2[J]. Optical Materials, 114, 110915(2021).

    [30] Bai J J, Zhang S S, Fan F et al. Tunable broadband THz absorber using vanadium dioxide metamaterials[J]. Optics Communications, 452, 292-295(2019).

    [31] Wang T L, Zhang Y P, Zhang H Y et al. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial[J]. Optical Materials Express, 10, 369-386(2020).

    [32] Wen Q Y, Zhang H W, Yang Q H et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability[J]. Applied Physics Letters, 97, 021111(2010).

    [33] Qi L M, Liu C, Zhang X et al. Structure-insensitive switchable terahertz broadband metamaterial absorbers[J]. Applied Physics Express, 12, 062011(2019).

    [34] Wang J F, Qu S B, Xu Z et al. A polarization-dependent wide-angle three-dimensional metamaterial absorber[J]. Journal of Magnetism and Magnetic Materials, 321, 2805-2809(2009).

    [35] Zhu B, Wang Z B, Huang C et al. Polarization insensitive metamaterial absorber with wide incident angle[J]. Progress in Electromagnetics Research, 101, 231-239(2010).

    Ting Zhang, Ting Zhang, Sen Yang, Sen Yang, XinYing Yu, XinYing Yu. Tunable Broadband Terahertz Perfect Absorber Design Based on Vanadium Dioxide[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2116002
    Download Citation