• Photonics Research
  • Vol. 8, Issue 4, 601 (2020)
Kai Zou1、2, Yun Meng1、2, Zhao Wang1、2, and Xiaolong Hu1、2、*
Author Affiliations
  • 1School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.380764 Cite this Article Set citation alerts
    Kai Zou, Yun Meng, Zhao Wang, Xiaolong Hu. Superconducting nanowire multi-photon detectors enabled by current reservoirs[J]. Photonics Research, 2020, 8(4): 601 Copy Citation Text show less
    References

    [1] Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, J.-W. Pan. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett., 113, 190501(2014).

    [2] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135-174(2007).

    [3] A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, J. L. OBrien. Quantum walks of correlated photons. Science, 329, 1500-1503(2010).

    [4] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, I. A. Walmsley. Boson sampling on a photonic chip. Science, 339, 798-801(2013).

    [5] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, A. G. White. Photonic boson sampling in a tunable circuit. Science, 339, 794-798(2013).

    [6] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, P. Walther. Experimental boson sampling. Nat. Photonics, 7, 540-544(2013).

    [7] V. Giovannetti, S. Lloyd, L. Maccone. Advances in quantum metrology. Nat. Photonics, 5, 222-229(2011).

    [8] M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, D. M. Boroson. An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires. Proc. SPIE, 9492, 949208(2015).

    [9] G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, R. H. Hadfield. 2.3 μm wavelength single photon lidar with superconducting nanowire detectors. CLEO: Science and Innovations, JTh2A–93(2019).

    [10] T. Zhong, X. Hu, F. N. Wong, K. K. Berggren, T. D. Roberts, P. Battle. High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength. Opt. Lett., 35, 1392-1394(2010).

    [11] S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, H. Terai. Superconducting coincidence photon detector with short timing jitter. Appl. Phys. Lett., 112, 262601(2018).

    [12] R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto. Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation. Phys. Rev. A, 88, 042317(2013).

    [13] M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, S. W. Nam. High-order temporal coherences of chaotic and laser light. Opt. Express, 18, 1430-1437(2010).

    [14] G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett., 79, 705-707(2001).

    [15] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, S. W. Nam. Detecting single infrared photons with 93% system efficiency. Nat. Photonics, 7, 210-214(2013).

    [16] H. Shibata, K. Shimizu, H. Takesue, Y. Tokura. Ultimate low system dark-count rate for superconducting nanowire single-photon detector. Opt. Lett., 40, 3428-3431(2015).

    [17] W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, X. Xie. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China: Phys. Mech. Astron., 60, 120314(2017).

    [18] I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, S. N. Dorenbos. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution. APL Photon., 2, 111301(2017).

    [19] B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, K. K. Berggren. Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics(2020).

    [20] J. Münzberg, A. Vetter, F. Beutel, W. Hartmann, S. Ferrari, W. H. Pernice, C. Rockstuhl. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica, 5, 658-665(2018).

    [21] S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, M. Siegel. Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays. IEEE Trans. Appl. Supercond., 27, 2201005(2016).

    [22] S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, M. Siegel. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array. Appl. Phys. Lett., 111, 032603(2017).

    [23] A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, A. Fiore. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photonics, 2, 302-306(2008).

    [24] Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, K. K. Berggren. Superconducting-nanowire single-photon-detector linear array. Appl. Phys. Lett., 103, 142602(2013).

    [25] X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, P. Wu. A high speed and high efficiency superconducting photon number resolving detector. Superconductor Sci. Technol., 32, 064002(2019).

    [26] M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, H.-G. Meyer. Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond., 23, 2501205(2013).

    [27] D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, K. K. Berggren. A scalable multi-photon coincidence detector based on superconducting nanowires. Nat. Nanotechnol., 13, 596-601(2018).

    [28] M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, S. W. Nam. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl. Phys. Lett., 106, 192601(2015).

    [29] Y. Cheng, H. Liu, C. Gu, X. Zhu, X. Hu. Superconducting nanowire single-photon detectors integrated with current reservoirs. CLEO: Science and Innovations, JW2A–120(2017).

    [30] J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, K. K. Berggren. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond., 17, 581-585(2007).

    [31] R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, K. Wilsher. Ultrafast superconducting single-photon optical detectors and their applications. IEEE Trans. Appl. Supercond., 13, 1151-1157(2003).

    [32] D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, A. Fiore. Nanoscale optical detector with single-photon and multiphoton sensitivity. Nano Lett., 10, 2977-2981(2010).

    [33] F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, K. K. Berggren. Single-photon detectors based on ultranarrow superconducting nanowires. Nano Lett., 11, 2048-2053(2011).

    [34] K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, J. C. Bardin. A superconducting nanowire can be modeled by using spice. Supercond. Sci. Technol., 31, 055010(2018).

    [35] C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, J. Kim. Multi-photon detection using a conventional superconducting nanowire single-photon detector. Optica, 4, 1534-1535(2017).

    [36] K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, D. J. Gauthier. Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors. Phys. Rev. Appl., 12, 034020(2019).

    [37] D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, K. K. Berggren. Resolving photon numbers using a superconducting tapered nanowire detector(2019).

    [38] A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, K. K. Berggren. Using geometry to sense current. Nano Lett., 16, 7626-7631(2016).

    [39] M. J. Fitch, B. C. Jacobs, T. B. Pittman, J. D. Franson. Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A, 68, 043814(2003).

    [40] X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. Wong, K. K. Berggren. Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency. Opt. Lett., 34, 3607-3609(2009).

    [41] J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, X. Xie. Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength. Supercond. Sci. Technol., 30, 074004(2017).

    [42] X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, X. Hu. Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity. Opt. Lett., 43, 5017-5020(2018).

    [43] Y. Meng, K. Zou, N. Hu, X. Lan, L. Xu, J. Zichi, S. Steinhauer, V. Zwiller, X. Hu. Fractal superconducting nanowire avalanche photodetector at 1550 nm with 60% system detection efficiency and 1.05 polarization sensitivity. Opt. Lett., 45, 471-474(2020).

    [44] X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, K. K. Berggren. Efficiently coupling light to superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond., 19, 336-340(2009).

    [45] F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, D. Englund. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun., 6, 5873(2015).

    [46] L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, X. Ma, C.-Y. Lu, Y.-A. Chen, J.-W. Pan. Observation of ten-photon entanglement using thin crystals. Optica, 4, 77-83(2017).

    Kai Zou, Yun Meng, Zhao Wang, Xiaolong Hu. Superconducting nanowire multi-photon detectors enabled by current reservoirs[J]. Photonics Research, 2020, 8(4): 601
    Download Citation