• Laser & Optoelectronics Progress
  • Vol. 58, Issue 4, 0415001 (2021)
Zaiteng Zhang, Rongfen Zhang, and Yuhong Liu*
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • show less
    DOI: 10.3788/LOP202158.0415001 Cite this Article Set citation alerts
    Zaiteng Zhang, Rongfen Zhang, Yuhong Liu. Visual Odometry Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0415001 Copy Citation Text show less
    References

    [1] He Q Q, Zhang R F, Liu Y H. Human detection algorithm optimization in machine vision[J]. Laser & Optoelectronics Progress, 57, 101006(2020).

    [2] Nister D, Naroditsky O, Bergen J. Visual odometry. [C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2004, CVPR 2004, June 27-July 2, 2004, Washington, DC, USA. New York: IEEE, 652-659(2004).

    [3] Wang S, Clark R, Wen H K et al. DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. [C]∥2017 IEEE International Conference on Robotics and Automation (ICRA), May 29-June 3, 2017, Singapore, Singapore. New York: IEEE, 17058210(2017).

    [4] Geiger A, Ziegler J, Stiller C. StereoScan: dense 3D reconstruction in real-time. [C]∥2011 IEEE Intelligent Vehicles Symposium (IV), June 5-9, 2011, Baden-Baden, Germany. New York: IEEE, 963-968(2011).

    [5] Davison A J, Murray D W. Simultaneous localization and map-building using active vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 865-880(2002).

    [6] Lin F C, Liu Y H, Zhou J F et al. Optimization of visual odometry algorithm based on ORB feature[J]. Laser & Optoelectronics Progress, 56, 211507(2019).

    [7] Roberts R, Nguyen H, Krishnamurthi N et al. Memory-based learning for visual odometry. [C]∥2008 IEEE International Conference on Robotics and Automation, May 19-23, 2008, Pasadena, CA, USA. New York: IEEE, 47-52(2008).

    [8] Costante G, Mancini M, Valigi P et al. Exploring representation learning with CNNs for frame-to-frame ego-motion estimation[J]. IEEE Robotics and Automation Letters, 1, 18-25(2016). http://ieeexplore.ieee.org/document/7347378/

    [9] Muller P, Savakis A. Flowdometry: an optical flow and deep learning based approach to visual odometry. [C]∥2017 IEEE Winter Conference on Applications of Computer Vision (WACV), March 24-31, 2017, Santa Rosa, CA, USA. New York: IEEE, 624-631(2017).

    [10] Costante G, Ciarfuglia T A. LS-VO: learning dense optical subspace for robust visual odometry estimation[J]. IEEE Robotics and Automation Letters, 3, 1735-1742(2018). http://ieeexplore.ieee.org/document/8283696/

    [11] Tang J X, Folkesson J, Jensfelt P. Geometric correspondence network for camera motion estimation[J]. IEEE Robotics and Automation Letters, 3, 1010-1017(2018). http://ieeexplore.ieee.org/document/8260906/

    [12] Zhang M H, Zhang B, Gao C C. Object classification based on multitask convolutional neural network[J]. Laser & Optoelectronics Progress, 56, 231502(2019).

    [13] Dosovitskiy A, Fischer P, Ilg E et al. FlowNet: learning optical flow with convolutional networks. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2758-2766(2015).

    [14] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 11211, 3-19(2018).

    Zaiteng Zhang, Rongfen Zhang, Yuhong Liu. Visual Odometry Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0415001
    Download Citation