• Journal of Semiconductors
  • Vol. 42, Issue 3, 031701 (2021)
Rokas Kondrotas1、2, Chao Chen1, XinXing Liu1, Bo Yang1, and Jiang Tang1
Author Affiliations
  • 1Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Center for Physical Sciences and Technology, Sauletekio 3, Vilnius 10257, Lithuania
  • show less
    DOI: 10.1088/1674-4926/42/3/031701 Cite this Article
    Rokas Kondrotas, Chao Chen, XinXing Liu, Bo Yang, Jiang Tang. Low-dimensional materials for photovoltaic application[J]. Journal of Semiconductors, 2021, 42(3): 031701 Copy Citation Text show less
    References

    [1]

    [2] M A Green, Y Hishikawa, E D Dunlop et al. Solar cell efficiency tables (version 52). Pro Photovolt, 26, 427(2018).

    [3] F Alharbi, J D Bass, A Salhi et al. Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials. Renew Energ, 36, 2753(2011).

    [4] J Jean, P R Brown, R L Jaffe et al. Pathways for solar photovoltaics. Energy Environ Sci, 8, 1200(2015).

    [5] H Lei, J Chen, Z Tan et al. Review of recent progress in antimony chalcogenide-based solar cells: Materials and devices. Solar RRL, 3, 1900026(2019).

    [6] A Mavlonov, T Razykov, F Raziq et al. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol Energy, 201, 227(2020).

    [7] L H Wong, A Zakutayev, J D Major et al. Emerging inorganic solar cell efficiency tables (Version 1). J Phys: Energy, 1, 032001(2019).

    [8] L Yu, R S Kokenyesi, D A Keszler et al. Inverse design of high absorption thin-film photovoltaic materials. Adv Energy Mater, 3, 43(2013).

    [9] L J Phillips, C N Savory, O S Hutter et al. Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE J Photovolt, 9, 544(2019).

    [10] Z Li, X Liang, G Li et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat Commun, 10, 125(2019).

    [11] C Liu, L Wang, Y Tang et al. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl Catal B, 164, 1(2015).

    [12] H J Chuang, B Chamlagain, M Koehler et al. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett, 16, 1896(2016).

    [13] M Zhao, J Su, Y Zhao et al. Sodium-mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Adv Funct Mater, 30, 1909849(2020).

    [14] Z G Chen, X Shi, L D Zhao et al. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog Mater Sci, 97, 283(2018).

    [15] T Wu, H Zhang. Piezoelectricity in two-dimensional materials. Angew Chem Int Ed, 54, 4432(2015).

    [16] S Niu, G Joe, H Zhao et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat Photonics, 12, 392(2018).

    [17] H Tian, J Tice, R Fei et al. Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today, 11, 763(2016).

    [18] J D H Donnay, D Harker. A new law of crystal morphology extending the law of Bravais. Am Mineral, 22, 446(1937).

    [19] R E Brandt, J R Poindexter, P Gorai et al. Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening. Chem Mater, 29, 4667(2017).

    [20] A Othonos. Probing ultrafast carrier and phonon dynamics in semiconductors. J App Phys, 83, 1789(1998).

    [21] E M Hutter, M C Gélvez-Rueda, A Osherov et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat Mater, 16, 115(2016).

    [22] M Saliba, J P Correa-Baena, C M Wolff et al. How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem Mater, 30, 4193(2018).

    [23] A Walsh, A Zunger. Instilling defect tolerance in new compounds. Nat Mater, 16, 964(2017).

    [24] J Vidal, S Lany, M d’Avezac et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett, 100, 032104(2012).

    [25] Y Huang, C Wang, X Chen et al. First-principles study on intrinsic defects of SnSe. RSC Advances, 7, 27612(2017).

    [26] D Han, M H Du, C M Dai et al. Influence of defects and dopants on the photovoltaic performance of Bi2S3: first-principles insights. J Mater Chem A, 5, 6200(2017).

    [27] M Huang, P Xu, D Han et al. Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3. ACS Appl Mater Inter, 11, 15564(2019).

    [28] J Qiao, X Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [29] Y Zhou, L Wang, S Chen et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat Photonics, 9, 409(2015).

    [30] K S Novoselov, A Mishchenko, A Carvalho et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [31] A W Welch, L L Baranowski, P Zawadzki et al. Accelerated development of CuSbS2 thin film photovoltaic device prototypes. Pro Photovoltaics, 24, 929(2016).

    [32] T Kirchartz, U Rau. What makes a good solar cell. Adv Energy Mater, 8, 1703385(2018).

    [33] L R Gilbert, B Van Pelt, C Wood. The thermal activation energy of crystalline Sb2Se3. J Phys Chem Solids, 35, 1629(1974).

    [34] Y Chen, Y Sun, J Peng et al. Tailoring organic cation of 2D air-Stable organometal halide perovskites for highly efficient planar solar cells. Adv Energy Mater, 7, 1700162(2017).

    [35] H Tsai, W Nie, J C Blancon et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 536, 312(2016).

    [36] M M Nassary. Temperature dependence of the electrical conductivity, Hall effect and thermoelectric power of SnS single crystals. J Alloy Compd, 398, 21(2005).

    [37] P Sinsermsuksakul, L Sun, S W Lee et al. Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater, 4, 1400496(2014).

    [38] L D Zhao, G Tan, S Hao et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 351, 141(2016).

    [39] A W Welch, L L Baranowski, H Peng et al. Trade-offs in thin film solar cells with layered chalcostibitephotovoltaic absorbers. Adv Energy Mater, 7, 1601935(2017).

    [40] K Ramasamy, H Sims, W H Butler et al. Mono-, few-, and multiple layers of copper antimony sulfide (CuSbS2): A ternary layered sulfide. J Am Chem Soc, 136, 1587(2014).

    [41] S Banu, S J Ahn, S K Ahn et al. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol Energ Mat Sol C, 151, 14(2016).

    [42] W Kautek. Electronic mobility anisotropy of layered semiconductors: transversal photoconductivity measurements at n-MoSe2. J Phys C, 15, L519(1982).

    [43] Z Chen, H Liu, X Chen et al. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl Mater Inter, 8, 20267(2016).

    [44] B Evans, P Young. Optical absorption and dispersion in molybdenum disulphide. Proc R Soc London Ser A, 284, 402(1965).

    [45] S Wi, H Kim, M Chen et al. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano, 8, 5270(2014).

    [46] D S Kyriakos, A N Anagnostopoulos. Electrical conductivity of layered GeSe related to extended faults. J App Phys, 58, 3917(1985).

    [47] D J Xue, S C Liu, C M Dai et al. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J Am Chem Soc, 139, 958(2017).

    [48] B R Chakraborty, B Ray, R Bhattacharya et al. Magnetic and electric properties of antimony selenide (Sb2Se3) crystals. J Phys Chem Solids, 41, 913(1980).

    [49] B Roy, B R Chakraborty, R Bhattacharya et al. Electrical and magnetic properties of antimony sulphide (Sb2S3) crystals and the mechanism of carrier transport in it. Solid State Commun, 25, 937(1978).

    [50] Y C Choi, D U Lee, J H Noh et al. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Function Mater, 24, 3587(2014).

    [51] X Wang, R Tang, C Jiang et al. Manipulating the electrical properties of Sb2(S,Se)3 film for high-efficiency solar cell. Adv Energy Mater, 10, 2002341(2020).

    [52] A Cantarero, J Martinez-Pastor, A Segura et al. Transport properties of bismuth sulfide single crystals. Phys Rev B, 35, 9586(1987).

    [53] H Song, X Zhan, D Li et al. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics. Sol Energ Mat Sol C, 146, 1(2016).

    [54] M Yoshida, K Yamanaka, Y Hamakawa. Semiconducting and dielectric properties of c-axia oriented SbSI thin film. Jpn J Appl Phys, 12, 1699(1973).

    [55] R Nie, H S Yun, M J Paik et al. Efficient solar cells based on light-harvesting antimony sulfoiodide. Adv Energy Mater, 8, 1701901(2018).

    [56] R L Z Hoye, L C Lee, R C Kurchin et al. Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI). Adv Mater, 29, 1702176(2017).

    [57] T K Todorov, S Singh, D M Bishop et al. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nat Commun, 8, 682(2017).

    [58] A Koma. New epitaxial growth method for modulated structures using van der Waals interactions. Surf Sci, 267, 29(1992).

    [59] B Yang, C Wang, Z Yuan et al. Hydrazine solution processed CuSbSe2: Temperature dependent phase and crystal orientation evolution. Sol Energ Mat Sol C, 168, 112(2017).

    [60] R Jaccodine. Surface energy of germanium and silicon. J Electrochem Soc, 110, 524(1963).

    [61] V Stevanović, K Hartman, R Jaramillo et al. Variations of ionization potential and electron affinity as a function of surface orientation: The case of orthorhombic SnS. Appl Phys Lett, 104, 211603(2014).

    [62]

    [63] M E Rincón, M Sánchez, P J George et al. Comparison of the properties of bismuth sulfide thin films prepared by thermal evaporation and chemical bath deposition. J Solid State Chem, 136, 167(1998).

    [64] T M Razykov, A X Shukurov, O K Atabayev et al. Growth and characterization of Sb2Se3 thin films for solar cells. Sol Energy, 173, 225(2018).

    [65] Y S Mayon, T P White, R Wang et al. Evaporated and solution deposited planar Sb2S3 solar cells: A comparison and its significance. Phys Status Solid A, 213, 108(2016).

    [66] P A Nwofe, K T R Reddy, G Sreedevi et al. Single phase, large grain, p-conductivity-type SnS layers produced using the thermal evaporation method. Energy Procedia, 15, 354(2012).

    [67] M Zhang, L Lv, Z Wei et al. Thermal evaporation growth of topological insulator Bi2Se3 thin films. Mater Lett, 123, 87(2014).

    [68] N Solayappan, K K Raina, R K Pandey et al. Role of antimony sulfide buffer layers in the growth of ferroelectric antimony sulfo-iodide thin films. J Mater Res, 12, 825(1997).

    [69] J Varghese, C O’Regan, N Deepak et al. Surface roughness assisted growth of vertically oriented ferroelectric SbSI nanorods. Chem Mater, 24, 3279(2012).

    [70] R Kondrotas, J Zhang, C Wang et al. Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition. Sol Energ Mat Sol C, 199, 16(2019).

    [71] A Mavlonov, A Shukurov, F Raziq et al. Structural and morphological properties of PLD Sb2Se3 thin films for use in solar cells. Sol Energy, 208, 451(2020).

    [72] D Lim, H Suh, M Suryawanshi et al. Kinetically controlled growth of phase-pure SnS absorbers for thin film solar cells: Achieving efficiency near 3% with long-term stability using an SnS/CdS heterojunction. Adv Energy Mater, 8, 1702605(2018).

    [73] C Chen, J Tang. Open-crcuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions. ACS Energy Lett, 5, 2294(2020).

    [74] G X Liang, Y D Luo, S Chen et al. Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV. Nano Energy, 73, 104806(2020).

    [75] T D C Hobson, L J Phillips, O S Hutter et al. Isotype heterojunction solar cells using n-type Sb2Se3 thin films. Chem Mater, 32, 2621(2020).

    Rokas Kondrotas, Chao Chen, XinXing Liu, Bo Yang, Jiang Tang. Low-dimensional materials for photovoltaic application[J]. Journal of Semiconductors, 2021, 42(3): 031701
    Download Citation