• Matter and Radiation at Extremes
  • Vol. 8, Issue 3, 038401 (2023)
Yuanyuan Wang1、*, Zhihui Li1, Shifeng Niu2, Wencai Yi3, Shuang Liu1, Zhen Yao1, and Bingbing Liu1
Author Affiliations
  • 1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People’s Republic of China
  • 2Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, People’s Republic of China
  • 3Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China
  • show less
    DOI: 10.1063/5.0136443 Cite this Article
    Yuanyuan Wang, Zhihui Li, Shifeng Niu, Wencai Yi, Shuang Liu, Zhen Yao, Bingbing Liu. Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure[J]. Matter and Radiation at Extremes, 2023, 8(3): 038401 Copy Citation Text show less
    References

    [1] X. Q.Chen, C. L.Fu, R.Podloucky. Bonding and strength of solid nitrogen in the cubic gauche (cg-N) structure. Phys. Rev. B, 77, 064103(2008).

    [2] Y.Yin, M.Sun, Z.Pang. Predicted new structures of polymeric nitrogen under 100–600 GPa. Comput. Mater. Sci., 98, 399-404(2015).

    [3] X.Huang, X.Wang, T.Cui, F.Tian, X.Jin, D.Duan, L.Wang, B.Liu. Predicted novel metallic metastable phases of polymeric nitrogen at high pressures. New J. Phys., 15, 013010(2013).

    [4] G.Zou, X.Wang, B.Liu, F.Tian, T.Cui, L.Wang. Structural stability of polymeric nitrogen: A first-principles investigation. J. Chem. Phys., 132, 024502(2010).

    [5] S. V.Bondarchuk, B. F.Minaev. Two-dimensional honeycomb (A7) and zigzag sheet (ZS) type nitrogen monolayers. A first principles study of structural, electronic, spectral, and mechanical properties. Comput. Mater. Sci., 133, 122-129(2017).

    [6] T.Woo, F.Zhang, F.Zahariev, J.Hooper, A.Hu. Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation. Phys. Rev. B, 72, 214108(2005).

    [7] Y.Xie, Y.Ma, A. R.Oganov, J.Kotakoski, Z.Li. Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett., 102, 065501(2009).

    [8] G. T.Zou, Y. M.Ma, T.Cui, Z.He, J. F.Li, X. L.Wang, Z. M.Liu, B. B.Liu. Prediction of a new layered phase of nitrogen from first-principles simulations. J. Phys.: Condens. Matter, 19, 425226(2007).

    [9] J.Kotakoski, K.Albe. First-principles calculations on solid nitrogen: A comparative study of high-pressure phases. Phys. Rev. B, 77, 144109(2008).

    [10] R. M.Martin, D.Sanchez-Portal, S.Chiesa, W. D.Mattson. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett., 93, 125501(2004).

    [11] T.Cui, X.Zhong, X.Wang, L.Chen, J.Li, M.Miao, J.Lv, Y.Ma, C. J.Pickard, Y.Wang. Cagelike diamondoid nitrogen at high pressures. Phys. Rev. Lett., 109, 175502(2012).

    [12] A. G.Gavriliuk, I. A.Trojan, M. I.Eremets, R.Boehler, D. A.Dzivenko. Single-bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).

    [13] D.Tomasino, C. S.Yoo, M.Kim, J.Smith. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502(2014).

    [14] G.Weck, P.Loubeyre, G.Geneste, M.Mezouar, D.Laniel. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001(2019).

    [15] L.Dubrovinsky, N.Dubrovinskaia, D.Laniel, A.Pakhomova, T.Fedotenko, S.Chariton, V.Milman, B.Winkler, V.Prakapenka. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).

    [16] G.Garbarino, G.Gaiffe, D.Laniel, G.Weck, P.Loubeyre. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).

    [17] V. B.Prakapenka, X.Zhang, A. F.Goncharov, E.Greenberg, Y.Wang, A. R.Oganov, S. Q.Jiang, I.Chepkasov, E.Bykova, A.Samtsevich, M.Bykov, S.Chariton. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem., 14, 794-800(2022).

    [18] E.Bykova, E.Koemets, B.Winkler, M.Bykov, L.Dubrovinsky, N.Dubrovinskaia, T.Fedotenko, D.Laniel. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).

    [19] J. M.Zaug, B. A.Steele, V. B.Prakapenka, I. I.Oleynik, J. C.Crowhurst, E.Stavrou. High-pressure synthesis of a pentazolate salt. Chem. Mater., 29, 735-741(2016).

    [20] K.Glazyrin, L. S.Dubrovinsky, A. A.Aslandukova, D.Laniel, T.Fedotenko, N.Dubrovinskaia, V. B.Prakapenka, S.Chariton, A. N.Aslandukov. High-pressure synthesis of the beta-Zn3N2 nitride and the alpha-ZnN4 and beta-ZnN4 polynitrogen compounds. Inorg. Chem., 60, 14594-14601(2021).

    [21] T.Bin Masood, A. I.Abrikosov, M.Bykov, A. V.Ponomareva, L.Dubrovinsky, V. B.Prakapenka, A. F.Goncharov, M.Hanfland, M. F.Mahmood, J. S.Smith, A. N.Rudenko, T.Fedotenko, D.Laniel, N.Dubrovinskaia, S.Chariton, I.Hotz, M. I.Katsnelson, I. A.Abrikosov, F.Tasnadi, K.Glazyrin. High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett., 126, 175501(2021).

    [22] H.Yan, Q.Wei, M.Zhang. Une xpected ground-state crystal structures and mechanical properties of transition metal pernitrides MN2 (M = Ti, Zr, and Hf). J. Alloys Compd., 774, 918-925(2019).

    [23] A. R.Oganov, X.Li, J. M.McMahon, X.Dong, H.Dong, J.Zhang. Theoretical study of the crystal structure, stability, and properties of phases in the V-N system. Phys. Rev. B, 104, 134111(2021).

    [24] L.Liu, H.Zhu, J.Li, M.Zhang, L.Chen, T.Cui, X.Wang, J.Botana, M.Miao. Polymerization of nitrogen in lithium azide. J. Chem. Phys., 139, 164710(2013).

    [25] H.Zhu, L.Chen, H.Lin, X.Wang, J.Li. Polymerization of nitrogen in cesium azide under modest pressure. J. Chem. Phys., 141, 044717(2014).

    [26] Z.Wu, X.Zhang, Q.Li, M.Zhang, H.Wang, K.Yin. Structural and electronic properties of sodium azide at high pressure: A first principles study. Solid State Commun., 161, 13-18(2013).

    [27] J.Lin, J.Li, X.Wang, Q.Rui, Q.Wang, F.Wang. A novel square planar N42− ring with aromaticity in BeN4. Matter Radiat. Extremes, 7, 038401(2022).

    [28] B.Liu, H.Li, X.Shi, C.Zhai, S.Niu, S.Liu, D.Xu, P.Wang, K.Hu, Z.Yao. Pressure-stabilized polymerization of nitrogen in manganese nitrides at ambient and high pressures. Phys. Chem. Chem. Phys., 24, 5738(2022).

    [29] H.Gao, J.Sun, J.Yuan, Q.Wu, C.Liu, X.Zheng, K.Xia. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts. J. Phys. Chem. C, 123, 10205-10211(2019).

    [30] K.Xia, J.Yuan, J.Sun, J.Wu. High-energy-density pentazolate salts: CaN10 and BaN10. Sci. China-Phys. Mech. Astron., 64, 218211(2020).

    [31] K.Hao, S.Liu, M.Zhou, P.Gao, J.Lv, W.Lu. Pressure-stabilized high-energy-density material YN10. J. Phys.: Condens. Matter, 34, 135403(2022).

    [32] Q.Wu, J.Sun, X.Zheng, H.Gao, C.Liu, J.Yuan, K.Xia. Predictions on high-power trivalent metal pentazolate salts. J. Phys. Chem. Lett., 10, 6166-6173(2019).

    [33] G.Frapper, B.Wang, H.Valencia, F.Guégan, R.Larhlimi. Prediction of novel tin nitride SnxNy phases under pressure. J. Phys. Chem. C, 124, 8080-8093(2020).

    [34] W.Yi, Y.Zheng, M.Miao, X.Chen, L.Zhao, X.Liu. Packing high-energy together: Binding the power of pentazolate and high-valence metals with strong bonds. Mater. Des., 193, 108820(2020).

    [35] J.Zhang, Y. L.Li, Z.Zeng, H. Q.Lin. Pressure-induced planar N6 rings in potassium azide. Sci. Rep., 4, 4358(2014).

    [36] K.Xia, H.Gao, J.Yuan, C.Liu, H. T.Wang, J.Sun, D.Xing. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull., 63, 817-824(2018).

    [37] Q.Zhuang, D.Li, Z.Liu, T.Cui, F.Li, D.Duan, F.Tian. Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions. Commun. Chem., 3, 42(2020).

    [38] B.Wan, Y.Yao, R.Tian, F.Gao, H.Liu, T.Shen, L.Wu, N.Gong, P.Chen, H.Gou. Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem. Mater., 30, 8476-8485(2018).

    [39] X.Zhang, Z.Mu, M.Wen, H.Dong, X.Xie, X.Zhang, F.Wu. Pressure-induced high-energy-density BeN4 materials with nitrogen chains: First-principles study. J. Phys. Chem. C, 125, 25376-25382(2021).

    [40] S.Sun, B.Liao, P.Zhou, B.Wan, J.Sun, H.Gou, J.Xu, L.Wu, Y.Li. Ultra-incompressibility and high energy density of ReN8 with infinite nitrogen chains. J. Mater. Sci., 56, 3814-3826(2020).

    [41] G.Yin, Q.Chang, S.Wei, Z.Yu, Y.Guo, S.Chen, Y.Sun, H.Sun, Z.Liu. Polymerization of nitrogen in two theoretically predicted high-energy compounds ScN6 and ScN7 under modest pressure. New J. Phys., 24, 083015(2022).

    [42] X.Li, J.Zhang, H.Niu, A. R.Oganov. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B, 95, 020103(2017).

    [43] Q.Zeng, G.Frapper, S.Yu, A. R.Oganov, B.Huang, L.Zhang. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure. J. Phys. Chem. C, 121, 11037-11046(2017).

    [44] B.Huang, G.Frapper. Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds. Chem. Mater., 30, 7623-7636(2018).

    [45] J.Lin, D.Peng, X.Wang, H.Zhu, Q.Wang, J.Li. Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions. Phys. Chem. Chem. Phys., 23, 6863-6870(2021).

    [46] Z.Yao, B.Liu, S.Liu, X.Shi, R.Liu, H.Li, P.Wang. Cobalt-nitrogen compounds at high pressure. Inorg. Chem., 60, 14022-14030(2021).

    [47] Z.Yao, B.Liu, X.Shi, H.Li, S.Niu, Z.Li. New cadmium-nitrogen compounds at high pressures. Inorg. Chem., 60, 6772-6781(2021).

    [48] I. I.Oleynik, B. A.Steele. Novel potassium polynitrides at high pressures. J. Phys. Chem. A, 121, 8955-8961(2017).

    [49] F.Tian, S.Wei, D.Duan, Z.Liu, D.Li, W.Wang, K.Bao, T.Cui, B.Liu. A novel polymerization of nitrogen in beryllium tetranitride at high pressure. J. Phys. Chem. C, 121, 9766-9772(2017).

    [50] Y.Tian, G.Gao, X.Shao, H. T.Wang, A. R.Oganov, X. F.Zhou, X. J.Weng, J.Hou, X.Dong. Helium-nitrogen mixtures at high pressure. Phys. Rev. B, 103, L060102(2021).

    [51] D.Duan, Z.Liu, F.Tian, Y.Liu, T.Cui, D.Li. Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides. Phys. Chem. Chem. Phys., 21, 12029(2019).

    [52] H.Zhang, D.Wang, S.Zhang, L.Liu. Pressure-stabilized GdN6 with an armchair–antiarmchair structure as a high energy density material. J. Mater. Chem. A, 9, 16751-16758(2021).

    [53] X.Wang, Y.Zheng, K.Chen, H.Cai, J.Zeng, X.Jiang, Y.Feng. Prediction of erbium–nitrogen compounds as high-performance high-energy-density materials. J. Phys.: Condens. Matter, 35, 085701(2023).

    [54] S.Zhang, S.Chen, J.Zhu, S.Guo, X.Hu, J.Sun, Y.Sun, Y.Fu. Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Appl. Catal., B, 280, 119419(2021).

    [55] J.Qi, S.Zhou, S.Lin, K.Xie. Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia. J. Energy Chem., 60, 249-258(2021).

    [56] F.Zhou, B.Xu, H.Chen, Q.Liu, G.Cui, F.Gong, R.Zhao, T.Wang, X.Xiong, L.Xia, Q.Zhou, X.Sun. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng., 7, 2889-2893(2019).

    [57] O.Eriksson, G.Vaitheeswaran, X.Zhang, Y.Ma, V.Kanchana, A.Svane. Lattice dynamics and elastic properties of the 4f electron system: CeN. Phys. Rev. B, 84, 205135(2011).

    [58] D.Ceresoli, M. B.Nielsen, J.-E.J?rgensen, M.Bremholm, V. B.Prakapenka, C.Prescher. Experimental evidence for pressure-induced first order transition in cerium nitride from B1 to B10 structure type. J. Appl. Phys., 121, 025903(2017).

    [59] M.Zhang, H.Yan, H.Wang, Q.Wei. Exploration on pressure-induced phase transition of cerium mononitride from first-principles calculations. Appl. Phys. Lett., 102, 231901(2013).

    [60] J.Lv, L.Zhu, Y.Ma, Y.Wang. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 183, 2063-2070(2012).

    [61] J. F. l. G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).

    [62] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [63] J.Bai, A. M.Hao. First-principles calculations of electronic and magnetic properties of CeN: The LDA + U method. Chin. Phys. B, 22, 107102(2013).

    [64] Y. G.Zhang, G. B.Zhang, Y. X.Wang. First-principles study of the electronic structure and optical properties of Ce-doped ZnO. J. Appl. Phys., 109, 063510(2011).

    [65] A.Schriever, T.Zacherle, R. A.De Souza, M.Martin. Ab initio analysis of the defect structure of ceria. Phys. Rev. B, 87, 134104(2013).

    [66] K.Hermansson, C. W. M.Castleton, J.Kullgren. Tuning for electron localization and structure at oxygen vacancies in ceria. J. Chem. Phys., 127, 244704(2007).

    [67] D. J. G.Kresse. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [68] A.Savin, J. P.Perdew, A. V.Krukau, G. E.Scuseria. Hybrid functionals with local range separation. J. Chem. Phys., 129, 124103(2008).

    [69] I.Tanaka, A.Togo, L.Chaput. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B, 91, 094306(2015).

    [70] M. J. K. a. C.Dickinson. Evaluation of the simplied calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J. Chem. Phys., 48, 43-50(1968).

    [71] A.Rahman, M.Parrinello. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett., 45, 1196-1199(1980).

    [72] V. L.Deringer, R.Dronskowski, A. L.Tchougreeff. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A, 115, 5461-5466(2011).

    [73] M. C.Payne, C. J.Pickard, P. J. D.Lindan, M. J.Probert, P. J.Hasnip, M. D.Segall, S. J.Clark. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 14, 2717-2744(2002).

    [74] H.Liu, Y.Yao, F.Peng, Y.Ma. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett., 6, 2363-2366(2015).

    [75] S.Zhu, S.Li, S.Ma, T.Gao, F.Peng. Novel phase of AlN4 as a possible superhard material. J. Phys. Chem. C, 122, 22660-22666(2018).

    [76] C.Pinilla, Z.Raza, C. J.Pickard, A. M.Saitta. High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys. Rev. Lett., 111, 235501(2013).

    [77] Z.Zhao, F.Tian, T.Cui, B.Liu, K.Bao, D.Duan. Phase diagram, mechanical properties, and electronic structure of Nb-N compounds under pressure. Phys. Chem. Chem. Phys., 17, 22837-22845(2015).

    [78] L.Wu, Y.Zhao, Y.Zhang, Z.Li, J.Zhang, Q.Hu, Y.Lin, B.Wan, R.Gao, H.Gou. Diverse ruthenium nitrides stabilized under pressure: A theoretical prediction. Sci. Rep., 6, 33506(2016).

    [79] G.Yang, Y.Yao, J.Wang, Q.Yang, X.Du. IrN4 and IrN7 as potential high-energy-density materials. J. Chem. Phys., 154, 054706(2021).

    Yuanyuan Wang, Zhihui Li, Shifeng Niu, Wencai Yi, Shuang Liu, Zhen Yao, Bingbing Liu. Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure[J]. Matter and Radiation at Extremes, 2023, 8(3): 038401
    Download Citation