• High Power Laser and Particle Beams
  • Vol. 35, Issue 4, 041005 (2023)
Yuefang Yan1、2, Rumao Tao1、*, Yu Liu1, Yuwei Li1, Haoyu Zhang1, Qiuhui Chu1, Min Li1, Qiang Shu1, Xi Feng1, Wenhui Huang2, and Feng Jing1
Author Affiliations
  • 1Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • 2Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Tsinghua University, Beijing 100084, China)
  • show less
    DOI: 10.11884/HPLPB202335.220316 Cite this Article
    Yuefang Yan, Rumao Tao, Yu Liu, Yuwei Li, Haoyu Zhang, Qiuhui Chu, Min Li, Qiang Shu, Xi Feng, Wenhui Huang, Feng Jing. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35(4): 041005 Copy Citation Text show less
    References

    [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0904123(2014).

    [2] Naeem M. Advances in drilling with fiber lasers[C]Proceedings of SPIE 9657, Industrial Laser Applications Symposium (ILAS 2015). 2015: 965705.

    [3] Clery D. Laser fusion, with a difference[J]. Science, 347, 111-112(2015).

    [4] Shi Wei, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction[J]. Journal of the Optical Society of America B, 34, FLA1(2017).

    [5] Yang Changsheng, Xu Shanhui, Zhou Jun, . Research advance on the key technology of high-power fiber laser materials and components[J]. CIENTIA SINICA Technologica, 47, 1038-1048(2017).

    [6] Zhou Pu, Huang Liangjin, Leng Jinyong, . High-power double-cladding fiber lasers: a 30-year overview[J]. SCIENTIA SINICA Technologica, 50, 123-135(2020).

    [7] Dang Wenjia, Li Zhe, Li Yuting, . Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 13, 676-694(2020).

    [8] Xiao Qirong, Tian Jiading, Li Dan, . Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 48, 1501004(2021).

    [9] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]Proceedings of the CLEO: Science Innovations 2013. 2013: AF2J. 1.

    [10] Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 14, 102479(2019).

    [11] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 62, 41301(2019).

    [12] Chen Xiaolong, Lou Fengguang, He Yu, . Home-made 10kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).

    [13] Lin Aoxiang, Xiao Qirong, Ni Li, . Home-made YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 48, 0916003(2021).

    [14] Xiao Hu, Pan Zhiyong, Chen Zilun, . Based on self-developed optical fibers and devices to achieve stable output of 20kW high beam quality laser[J]. Chinese Journal of Lasers, 49, 1616002(2022).

    [15] Wang Peng, Xi Xiaoming, Zhang Hanwei, . Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 35, 121001(2022).

    [16] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [17] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011).

    [18] Tao Rumao, Wang Xiaolin, Zhou Pu. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903319(2018).

    [19] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 27, 19019-19041(2019).

    [20] Wang Jianjun, Liu Yu, Li Min, . Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 32, 121003(2020).

    [21] Lin Aoxiang, Peng Kun, Yu Juan, . Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 34, 011005(2022).

    [22] Zhang Chun, Xie Lianghua, Chu Qiuhui, . Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 34, 021002(2022).

    [23] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [24] Zhou Pu, Leng Jinyong, Xiao Hu, . High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).

    [25] Lou Qihong, He Bing, Zhou Jun. Fiber lasers and it's coherent beam combination[J]. Infrared and Laser Engineering, 36, 155-159(2007).

    [26] Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 55, 096101(2016).

    [27] Liu Zejin, Ma Pengfei, Su Rongtao, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited][J]. Journal of the Optical Society of America B, 34, A7-A14(2017).

    [28] Wang Xiaolin, Zhou Pu, Su Rongtao, . Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201001(2017).

    [29] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0902709(2018).

    [30] Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 140, 107016(2021).

    [31] Wu Jian, Ma Yanxing, Ma Pengfei, . Fiber laser coherent beam combination of 20 kW class high power output[J]. Infrared and Laser Engineering, 50, 20210621(2021).

    [32] Zhou Pu, Su Rongtao, Ma Yanxing, . Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).

    [33] Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 36, 951-953(2011).

    [34] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).

    [35] Goodno G D, Weiss S B. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Optics Express, 20, 14945-14953(2012).

    [36] Zhi Dong, Ma Pengfei, Ma Yanxing, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Optics Express, 22, 31520-31528(2014).

    [37] Mueller M, Klenke A, Steinkopff A, et al. 3.5 kW coherently combined ultrafast fiber laser[C]Proceedings of SPIE 10897, Fiber Lasers XVI: Technology Systems. 2019: 1089719.

    [38] Ma Yanxing, Luo Gen, He Shuyue, et al. Cantilevered adaptive fiber-optics collimator based on piezoelectric bimorph actuators[J]. Applied Optics, 61, 3195-3200(2022).

    [39] Chen Zilun, Zhou Xuanfeng, Wang Zefeng, . Review of all-fiber signal combiner for high power fiber lasers [Invited][J]. Infrared and Laser Engineering, 47, 0103005(2018).

    [40] Rockwell D A, Shkunov V V, Marciante J R. Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package[J]. Optics Express, 19, 14746-14762(2011).

    [41] Sun Jiapo, Liu Lie, Han Lianghua, et al. 100 kW ultra high power fiber laser[J]. Optics Continuum, 1, 1932-1938(2022).

    [42] Shcherbakov E A, Fomin V V, Abramov A A, et al. Industrial grade 100 kW power CW fiber laser[C]Proceedings of the Advanced Solid State Lasers. 2013: ATh4A. 2.

    [43] Kozlov V A, Hernández-Cordero J, Morse T F. All-fiber coherent beam combining of fiber lasers[J]. Optics Letters, 24, 1814-1816(1999).

    [44] Wang Baishi, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array[J]. Optics Letters, 34, 863-865(2009).

    [45] Fotiadi A A, Antipov O L, Mégret P. Resonantly induced refractive index changes in Ybdoped fibers: the igin, properties application f allfiber coherent beam combining[M]Pal B. Frontiers in Guided Wave Optics Optoelectronics. Vukovar: InTech, 2010: 209234.

    [46] Wang Baishi, Sanchez A. Allfiber passive coherent beam combining of fiber lasers challenges[C]Proceedings of the Fiber Laser Applications 2012. 2012: FTh3A. 2.

    [47] Yang Baolai, Wang Xiaolin, Zhou Pu, . Research of all-fiber laser coherent combining system based on fiber-loop[J]. Chinese Journal of Lasers, 41, 1005001(2014).

    [48] Kambayashi Y, Yoshida M, Sasaki T, et al. All-fiber phase-control-free coherent-beam combining toward femtosecond-pulse amplification[J]. Optics Communications, 382, 556-558(2017).

    [49] Takahashi Y, Yamazaki T, Yoshida M. Development of all-fiber coherent beam combining optical system toward higher output of the fiber laser[J]. Journal of Laser Applications, 32, 022077(2020).

    [50] Lhermite J, Desfarges-Berthelemot A, Kermene V, et al. Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop[J]. Optics Letters, 32, 1842-1844(2007).

    [51] Shakir S A, Culver B, Nelson B, et al. Power scaling of passively phased fiber amplifier arrays[C]Proceedings of SPIE 7070, Optical Technologies f Arming, Safing, Fuzing, Firing IV. 2008: 70700N.

    [52] Li Zhen, Zhou Jun, He Bing, et al. Impact of phase perturbation on passive phase-locking coherent beam combination[J]. IEEE Photonics Technology Letters, 24, 655-657(2012).

    [53] Xue Yuhao, He Bing, Zhou Jun, et al. Array size scaling of passive coherent beam combination in fiber laser array[J]. Chinese Optics Letters, 10, 011401(2012).

    [54] Sabourdy D, Kermène V, Desfarges-Berthelemot A, et al. Power scaling of fibre lasers with all-fibre interferometric cavity[J]. Electronics Letters, 38, 692-693(2002).

    [55] Shirakawa A, Saitou T, Sekiguchi T, et al. Coherent addition of fiber lasers by use of a fiber coupler[J]. Optics Express, 10, 1167-1172(2002).

    [56] Sabourdy D, Kermène V, Desfarges-Berthelemot A, et al. Efficient coherent combining of widely tunable fiber lasers[J]. Optics Express, 11, 87-97(2003).

    [57] Wang Baishi, Sanchez A D. All-fiber passive coherent combining of high power lasers[J]. Optical Engineering, 50, 111606(2011).

    [58] Wu T W, Chang W Z, Galvanauskas A, et al. Model for passive coherent beam combining in fiber laser arrays[J]. Optics Express, 17, 19509-19518(2009).

    [59] Kouzsov D, Bisson J F, Shirakawa A, et al. Limits of coherent addition of lasers: simple estimate[C]2005 Pacific Rim Conference on Lasers ElectroOptics. 2005: 10611063.

    [60] Glova A F, Lysikov A Y, Musena E I. Phase locking of 2D laser arrays by the spatial filter method[J]. Quantum Electronics, 32, 277-278(2002).

    [61] Glova A F. Phase locking of optically coupled lasers[J]. Quantum Electronics, 33, 283-306(2003).

    [62] Goodno G D, Mcnaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 35, 1542-1544(2010).

    [63] Goodno G D, Mcnaught S J, Weber M E, et al. Multichannel polarization stabilization for coherently combined fiber laser arrays[J]. Optics Letters, 37, 4272-4274(2012).

    [64] Lai Wenchang, Ma Pengfei, Xiao Hu, . High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 121001(2020).

    [65] Chu Qiuhui, Guo Chao, Yan Donglin, . Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 32, 121004(2020).

    [66] Liao Yanbiao. Fiber optics: principles applications[M]. Beijing: Tsinghua University Press, 2010

    [67] Chi Zeying. Fiber optics, theies applications[M]. Beijing: Publishing House of Electronics Industry, 2014

    [68] Rothenberg J E, Goodno G D. Advances limitations in beam combination of kilowatt fiber amplifiers[C]Proceedings of SPIE 7686, Laser Technology f Defense Security VI. 2010: 768613.

    [69] Yang Yan, Geng Chao, Li Feng, . Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers[J]. Acta Optica Sinica, 35, s106005(2015).

    [70] Yang Yan, Geng Chao, Li Feng, et al. Combining module based on coherent polarization beam combining[J]. Applied Optics, 56, 2020-2028(2017).

    [71] Yang Yan. Research on multiaperture receiver with fiberbased coherent beam combining[D]. Chengdu: Institute of Optics Electronics, Chinese Academy of Sciences, 2018

    [72] Geng Chao, Yang Yan, Li Feng, . Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 45, 170692(2018).

    [73] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 23, 12407-12413(2015).

    [74] Freier C, Legge S, Roberts L, et al. Scalable all-fiber coherent beam combination using digital control[J]. Applied Optics, 61, 4543-4548(2022).

    [75] Birks T A, Gris-Sánchez I, Yerolatsitis S, et al. The photonic lantern[J]. Advances in Optics and Photonics, 7, 107-167(2015).

    [76] Montoya J, Aleshire C, Hwang C, et al. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers[J]. Optics Express, 24, 3405-3413(2016).

    [77] Aleshire C, Montoya J, Hwang C, et al. Photonic lantern mode control in fewmoded fiber amplifiers using SPGD[C]Proceedings of the CLEO: Science Innovations 2016. 2016: SM2Q. 6.

    [78] Montoya J, Hwang C, Martz D, et al. Photonic lantern kW-class fiber amplifier[J]. Optics Express, 25, 27543-27550(2017).

    [79] Montoya J, Aleshire C, Hwang C, et al. Transversemode instability mitigation using photoniclantern adaptive spatial mode control[C]Proceedings of the CLEO: Science Innovations. 2017: SM1L. 6.

    [80] Noordegraaf D, Skovgaard P M W, Maack M D, et al. Multi-mode to single-mode conversion in a 61 port Photonic Lantern[J]. Optics Express, 18, 4673-4678(2010).

    [81] Noordegraaf D, Skovgaard P M W, Sandberg R H, et al. Nineteen-port photonic lantern with multimode delivery fiber[J]. Optics Letters, 37, 452-454(2012).

    [82] Lu Yao, Liu Wenguang, Chen Zilun, et al. Spatial mode control based on photonic lanterns[J]. Optics Express, 29, 41788-41797(2021).

    [83] Lu Yao, Chen Zilun, Liu Wenguang, et al. Stable single transverse mode excitation in 50 µm core fiber using a photonic-lantern-based adaptive control system[J]. Optics Express, 30, 22435-22441(2022).

    [84] Wang Baishi, Mies E. Review of fabrication techniques f fused fiber components f fiber lasers[C]Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, Applications. 2009: 71950A.

    [85] Rothenberg J E, Cheung E C T. Integrated spectral allfiber coherent beam combination: 8184361[P]. 20120522.

    [86] Rothenberg J E. Allfiber integrated high power coherent beam combination: 8184363B2[P]. 20120522.

    [87] Shamir Y, Zuitlin R, Sintov Y, et al. 3kWlevel incoherent coherent mode combining via allfiber fused Ycouplers[C]Proceedings of the Frontiers in Optics 2012. 2012: FW6C. 1.

    [88] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam f material processing[C]Proceedings of SPIE 11260, Fiber Lasers XVII: Technology Systems. 2020: 1126021

    [89] Li Jie, Zhao Haichuan, Chen Zilun, et al. All-fiber active coherent combining via a fiber combiner[J]. Optics Communications, 286, 273-276(2013).

    [90] Yang Baolai, Wang Xiaolin, Ma Pengfei, et al. Active phase locking of four Ybdoped fiber amplifiers with a multimode fiber combiner[C]Proceedings of the FiberBased Technologies Applications 2014. 2014: JF2A. 6.

    [91] Yang Baolai. Study on active passive coherent combining of fiber lasers in allfiber configuration[D]. Changsha: National University of Defense Technology, 2014

    [92] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 18, 13547-13553(2010).

    [93] Tao Rumao, Si Lei, Ma Yanxing, et al. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model[J]. Applied Optics, 51, 5826-5833(2012).

    [94] Tao Rumao, Wang Xiaolin, Xiao Hu, et al. Coherent beam combination of fiber lasers with a strongly confined tapered self-imaging waveguide: theoretical modeling and simulation[J]. Photonics Research, 1, 186-196(2013).

    [95] Haynes J R, Baggett J C, Monro T M, et al. Square ce jacketed airclad fiber[C]2006 Optical Fiber Communication Conference the National Fiber Optic Engineers Conference. 2006.

    [96] Blomster O, Blomqvist M. Square fmed fiber optics f high power applications[C]Proceedings of the 4th International WLTConference on Lasers in Manufacturing. 2007.

    [97] Blomqvist M, Campbell S, Latokartano J, et al. MultikW laser cladding using cylindrical collimats squarefmed fibers[C]Proceedings of SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, Applications. 2012: 82390L.

    [98] Matsuura Y, Akiyama D, Miyagi M. Beam homogenizer for hollow-fiber delivery system of excimer laser light[J]. Applied Optics, 42, 3505-3508(2003).

    [99] Konishi K, Kanie T, Takahashi K, et al. Development of rectangular core optical fiber cable for high power laser[J]. SEI Technical Review, 109-112(2010).

    [100] Choi I S, Park J, Jeong H, et al. Fabrication of 4×1 signal combiner for high-power lasers using hydrofluoric acid[J]. Optics Express, 26, 30667-30677(2018).

    [101] Fu Min, Li Zhixian, Wang Zefeng, et al. Research on a 4×1 fiber signal combiner with high beam quality at a power level of 12kW[J]. Optics Express, 29, 26658-26668(2021).

    [102] Zou Shuzhen, Yu Haijuan, Zuo Jiexi, et al. Kilowatt-level 4×1 fiber combiner of low brightness loss with a square core output fiber[J]. Journal of Lightwave Technology, 39, 2130-2135(2021).

    [103] Yan Yuefang, Liu Yu, Zhang Haoyu, et al. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 10, 444-455(2022).

    [104] Liu Yu, Li Yue, Li Yuwei, et al. Fabrication of allfiber 2×2 coherent beam combiner f high power CBC applications[C]Proceedings of the Laser Applications Conference 2021. 2021: JTu1A. 19.

    Yuefang Yan, Rumao Tao, Yu Liu, Yuwei Li, Haoyu Zhang, Qiuhui Chu, Min Li, Qiang Shu, Xi Feng, Wenhui Huang, Feng Jing. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35(4): 041005
    Download Citation