• Journal of Semiconductors
  • Vol. 41, Issue 4, 041602 (2020)
Tianyao Zhang, Guang Yao, Taisong Pan, Qingjian Lu, and Yuan Lin
Author Affiliations
  • State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.1088/1674-4926/41/4/041602 Cite this Article
    Tianyao Zhang, Guang Yao, Taisong Pan, Qingjian Lu, Yuan Lin. Flexible inorganic oxide thin-film electronics enabled by advanced strategies[J]. Journal of Semiconductors, 2020, 41(4): 041602 Copy Citation Text show less
    References

    [1] K J Choi, M Biegalski, Y L Li et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 306, 1005(2004).

    [2] C Wang, X Ke, J Wang et al. Ferroelastic switching in a layered-perovskite thin film. Nat Commun, 7, 10636(2016).

    [3] H Lan, F Liang, X Jiang et al. Pushing nonlinear optical oxides into the mid-infrared spectral region beyond 10 μm: design, synthesis, and characterization of La3SnGa5O14. J Am Chem Soc, 140, 4684(2018).

    [4] Z Chen, Z Chen, C Y Kuo et al. Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat Commun, 9, 3764(2018).

    [5] C Himcinschi, J Rix, C Röder et al. Ferroelastic domain identification in BiFeO3 crystals using Raman spectroscopy. Sci Rep, 9, 379(2019).

    [6] Y Lin, D Y Feng, M Gao et al. Reducing dielectric loss in CaCu3Ti4O12 thin films by high-pressure oxygen annealing. J Mater Chem C, 3, 3438(2015).

    [7] G Yao, M Gao, Y Ji et al. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates. Sci Rep, 6, 34683(2016).

    [8] G Yao, Y Ji, W Liang et al. Influence of vicinal surface on the anisotropic dielectric properties of highly epitaxial Ba0.7Sr0.3TiO3 thin films. Nanoscale, 9, 3068(2017).

    [9] M C Choi, Y Kim, C S Ha. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci, 33, 581(2008).

    [10] J Jiang, Y Bitla, C W Huang et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci Adv, 3, e1700121(2017).

    [11] J H Ahn, H S Kim, K J Lee et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science, 314, 1754(2006).

    [12] G Yao, D Jiang, J Li et al. Self-activated electrical stimulation for effective hair regeneration via a wearable omnidirectional pulse generator. ACS Nano, 13, 12345(2019).

    [13] G Yao, L Kang, J Li et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun, 9, 5349(2018).

    [14] G Yao, H Zhang, S Zhang et al. Highly sensitive pressure switch sensors and enhanced near ultraviolet photodetectors based on 3D hybrid film of graphene sheets decorated with silver nanoparticles. RSC Adv, 7, 27281(2017).

    [15] S Zhang, H Zhang, G Yao et al. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J Alloys Compd, 652, 48(2015).

    [16] D H Kim, J Song, W M Choi et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 105, 18675(2008).

    [17] R H Kim, D H Kim, J Xiao et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 9, 929(2010).

    [18] D Y Khang, H Jiang, Y Huang et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 311, 208(2006).

    [19] H C Ko, G Shin, S Wang et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small, 5, 2703(2009).

    [20] A M V Mohan, N H Kim, Y Gu et al. Merging of thin- and thick-film fabrication technologies: toward soft stretchable “island-bridge” devices. Adv Mater Technol, 2, 1600284(2017).

    [21] S Xu, Y Zhang, L Jia et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 344, 70(2014).

    [22] Z Huang, Y Hao, Y Li et al. Three-dimensional integrated stretchable electronics. Nat Electron, 1, 473(2018).

    [23] K I Jang, K Li, H U Chung et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun, 8, 15894(2017).

    [24] W S Wong, T Sands, N W Cheung et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett, 75, 1360(1999).

    [25] T Fujii, A David, C Schwach et al. Micro cavity effect in GaN-based light-emitting diodes formed by laser lift-off and etch-back technique. Jpn J Appl Phys, 43, L411(2004).

    [26] C F Chu, F I Lai, J T Chu et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique. J Appl Phys, 95, 3916(2004).

    [27] C I Li, J C Lin, H J Liu et al. Van der Waal epitaxy of flexible and transparent VO2 film on muscovite. Chem Mater, 28, 3914(2016).

    [28] M I B Utama, M D L Mata, C Magen et al. Twinning-, polytypism-, and polarity-induced morphological modulation in nonplanar nanostructures with van der Waals epitaxy. Adv Funct Mater, 23, 1636(2013).

    [29] C H Ma, J C Lin, H J Liu et al. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl Phys Lett, 108, 253104(2016).

    [30] W S Wong, T Sands, N W Cheung et al. Damage-free separation of GaN thin films from sapphire substrates. Appl Phys Lett, 72, 599(1998).

    [31] J Luo, R Pohl, L Qi et al. Printing functional 3D microdevices by laser-induced forward transfer. Small, 13, 1602553(2017).

    [32] P Serra, A Piqué. Laser-induced forward transfer: fundamentals and applications. Adv Mater Technol, 4, 1800099(2018).

    [33] J M Fernández-Pradas, P Sopeña, S González-Torres et al. Laser-induced forward transfer for printed electronics applications. Appl Phys A, 124, 214(2018).

    [34] A Sorkio, L Koch, L Koivusalo et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials, 171, 57(2018).

    [35] O Kérourédan, E Ribot, J Fricain et al. Magnetic resonance imaging for tracking cellular patterns obtained by laser-assisted bioprinting. Sci Rep, 8, 15777(2018).

    [36] L Koch, O Brandt, A Deiwick et al. Laser-assisted bioprinting: a novel approach for bone regeneration application. Med Sci, 34, 125(2018).

    [37] V Keriquel, H Oliveira, M Rémy et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep, 7, 1778(2017).

    [38] Y Gao, Y Li, R Li et al. An accurate thermomechanical model for laser-driven microtransfer printing. J Appl Mech-T ASME, 84, 064501(2017).

    [39] H Luo, C Wang, C Linghu et al. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric micro-structured stamp. Natl Sci Rev, 7, 296(2019).

    [40] S Kim, J H Son, S H Lee et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv Mater, 26, 7480(2014).

    [41] H E Lee, S Kim, J Ko et al. Skin-like oxide thin-film transistors for transparent displays. Adv Funct Mater, 26, 6170(2016).

    [42] Y F Cheung, K H Li, H W Choi et al. Flexible free-standing III-nitride thin films for emitters and displays. ACS Appl Mater Interfaces, 8, 21440(2016).

    [43] T I Kim, Y H Jung, J Song et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small, 8, 1643(2012).

    [44] H E Lee, J Choi, S H Lee et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv Mater, 30, e1800649(2018).

    [45] S J Kim, H E Lee, H Choi et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano, 10, 10851(2016).

    [46] K I Park, J H Son, G T Hwang et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater, 26, 2514(2014).

    [47] H S Lee, J Chung, G T Hwang et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Funct Mater, 24, 6914(2014).

    [48] M Mendes, J Fu, C Porneala et al. Lasers in the manufacturing of LEDs. Proc SPIE, 7584, 75840T(2010).

    [49] S H Chuang, C T Pan, K C Shen et al. Thin film GaN LEDs using a patterned oxide sacrificial layer by chemical lift-off process. IEEE Photonics Technol Lett, 25, 2435(2013).

    [50] A Morimoto, H Tanimura, H Yang et al. Platinum film patterning by laser lift-off using hydrocarbon film on insulating substrates. Appl Phys A, 79, 1015(2004).

    [51] H Palneedi, J H Park, D Maurya et al. Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv Mater, 30, e1705148(2018).

    [52] X Xu, W Liu, Y Li et al. Flexible mica films for high-temperature energy storage. J Materiom, 4, 173(2018).

    [53] S I Ohta. Synthetic mica and its applications. Clay Sci, 12, 119(2006).

    [54] L Shen, M Liu, C Ma et al. Enhanced bending tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrate. Mater Horiz, 5, 230(2018).

    [55] D Gao, Z Tan, Z Fan et al. All-inorganic flexible Ba0.67Sr0.33TiO3 thin films with excellent dielectric properties over a wide range of frequencies. ACS Appl Mater Interfaces, 11, 27088(2019).

    [56] M F Tsai, J Jiang, P W Shao et al. Oxide heteroepitaxy based flexible ferroelectric transistor. ACS Appl Mater Interfaces, 11, 25882(2019).

    [57] L T Quynh, C N Van, W Y Tzeng et al. Flexible heteroepitaxy photoelectrode for photo-electrochemical water splitting. ACS Appl Energy Mater, 1, 3900(2018).

    [58] H J Liu, C K Wang, D Su et al. Flexible heteroepitaxy of CoFe2O4/muscovite bimorph with large magnetostriction. ACS Appl Mater Interfaces, 9, 7297(2017).

    [59] P C Wu, P F Chen, T H Do et al. Heteroepitaxy of Fe3O4/muscovite: a new perspective for flexible spintronics. ACS Appl Mater Interfaces, 8, 33794(2016).

    [60] W Hou, Z Zhou, L Zhang et al. Low-voltage-manipulating spin dynamics of flexible Fe3O4 films through ionic gel gating for wearable devices. ACS Appl Mater Interfaces, 11, 21727(2019).

    [61] W Liu, R Ma, M Liu et al. Highly stable in-plane microwave magnetism in flexible Li0.35Zn0.3Fe2.35O4 (111) epitaxial thin films for wearable devices. ACS Appl Mater Interfaces, 10, 32331(2018).

    [62] W Liu, M Liu, R Ma et al. Mechanical strain-tunable microwave magnetism in flexible CuFe2O4 epitaxial thin film for wearable sensors. Adv Funct Mater, 28, 1705928(2018).

    [63] T Amrillah, Y Bitla, K Shin et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via the van der Waals epitaxy. ACS Nano, 11, 6122(2017).

    [64] Y Yang, G Yuan, Z Yan et al. Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95Co0.05O3 film. Adv Mater, 29, 1700425(2017).

    [65] W Gao, L You, Y Wang et al. Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric tunability. Adv Electron Mater, 3, 1600542(2017).

    [66] Z Liang, C Ma, L Shen et al. Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy, 57, 519(2019).

    [67] Z Liang, M Liu, L Shen et al. All-inorganic flexible embedded thin film capacitors for dielectric energy storage with high performance. ACS Appl Mater Interfaces, 11, 5247(2019).

    [68] J Wu, Z Liang, C Ma et al. Flexible lead-free BaTiO3 ferroelectric elements with high performance. IEEE Electron Device Lett, 40, 889(2019).

    [69] P C Wu, Y P Lin, Y H Juan et al. Epitaxial yttria-stabilized zirconia on muscovite for flexible transparent ionic conductors. ACS Appl Nano Mater, 1, 6890(2018).

    [70] Y Bitla, C Chen, H C Lee et al. Oxide heteroepitaxy for flexible optoelectronics. ACS Appl Mater Interfaces, 8, 32401(2016).

    [71] S Ke, C Chen, N Fu et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices. ACS Appl Mater Interfaces, 8, 28406(2016).

    [72] M Li, Y Wang, Y Wang et al. AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application. Ceram Int, 43, 15442(2017).

    [73] Y Yang, W Gao, Z Xie et al. An all-inorganic, transparent, flexible, and nonvolatile resistive memory. Adv Electron Mater, 4, 1800412(2018).

    [74] Y Zhang, Y Cao, H Hu et al. Flexible metal-insulator transitions based on van der Waals oxide heterostructures. ACS Appl Mater Interfaces, 11, 8284(2019).

    [75] E Menard, K J Lee, D Y Khang et al. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett, 84, 5398(2004).

    [76] K J Lee, J J Lee, H Hwang et al. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Small, 1, 1164(2005).

    [77] M A Meitl, Z T Zhu, V Kumar et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 5, 33(2005).

    [78] X Feng, M A Meitl, A M Bowen et al. Competing fracture in kinetically controlled transfer printing. Langmuir, 23, 12555(2007).

    [79] Z Yan, T Pan, M Xue et al. Thermal release transfer printing for stretchable conformal bioelectronics. Adv Sci, 4, 1700251(2017).

    [80] K I Park, S Y Lee, S Kim et al. Bendable and transparent barium titanate capacitors on plastic substrates for high performance flexible ferroelectric devices. Electrochem Solid State Lett, 13, G57(2010).

    [81] G Yao, T Pan, Z Yan et al. Tailoring the energy band in flexible photodetector based on transferred ITO/Si heterojunction via interface engineering. Nanoscale, 10, 3893(2018).

    [82] X Feng, B D Yang, Y Liu et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano, 5, 3326(2011).

    [83] L Chen, J Nagy, R M M Reano et al. Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon. Opt Mater Express, 6, 2460(2016).

    [84] W Liang, M Gao, C Lu et al. Enhanced metal-insulator transition performance in scalable vanadium dioxide thin films prepared using a moisture-assisted chemical solution approach. ACS Appl Mater Interfaces, 10, 8341(2018).

    [85] F Liao, Z Yan, W Liang et al. Tuning the metal-insulator transition of vanadium dioxide thin films using a stretchable structure. J Alloys Compd, 705, 468(2017).

    [86] F Liao, Z Zhu, Z Yan et al. Ultrafast response flexible breath sensor based on vanadium dioxide. J Breath Res, 11, 036002(2017).

    [87] F Liao, C Lu, G Yao et al. Ultrasensitive flexible temperature-mechanical dual-parameter sensor based on vanadium dioxide films. IEEE Electron Device Lett, 38, 1128(2017).

    [88] M Gao, Z Qi, C Lu et al. Interplay between extra charge injection and lattice evolution in VO2/CH3NH3PbI3 heterostructure. Phys Status Solidi RRL, 12, 1700416(2018).

    [89] Z Kang, M Gao, C Lu et al. Thickness-modulated temperature dependent optical properties of VO2 thin films. Appl Phys A, 125, 63(2019).

    [90] C Lu, W Liang, G G Min et al. Terahertz transmittance of cobalt-doped VO2 thin film: investigated by terahertz spectroscopy and effective medium theory. IEEE Trans THz Sci Technol, 9, 177(2019).

    [91] W Liang, o Z Zhuo, Y Ji et al. In-plane orientation-dependent metal-insulator transition in vanadium dioxide induced by sublattice strain engineering. npj Quantum Mater, 4, 39(2019).

    [92] P Fratzl, F G Barth. Biomaterial systems for mechanosensing and actuation. Nature, 462, 442(2009).

    [93] D G Schlom, L Q Chen, C J Fennie et al. Elastic strain engineering of ferroic oxides. MRS Bull, 39, 118(2014).

    [94] A Chen, Q Su, H Han et al. Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv Mater, 31, 1803241(2018).

    [95] G Bridoux, J Barzola-Quiquia, F Bern et al. An alternative route towards micro- and nano-patterning of oxide films. Nanotechnology, 23, 085302(2012).

    [96] S R Bakaul, C R Serrao, M Lee et al. Single crystal functional oxides on silicon. Nat Commun, 7, 10547(2016).

    [97] L Shen, L Wu, Q Sheng et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. Adv Mater, 29, 1702411(2017).

    [98] Y Qi, N T Jafferis, K Lyons et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett, 10, 524(2010).

    [99] Y Qi, J Kim, T D Nguyen et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett, 11, 1331(2011).

    [100] Y Zhang, L Shen, M Liu et al. Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano, 11, 8002(2017).

    [101] D Ji, S Cai, T R Paudel et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 570, 87(2019).

    [102] D Lu, D J Baek, S S Hong et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat Mater, 15, 1255(2016).

    [103] H Wang, L Shen, T Duan et al. Integration of both invariable and tunable microwave magnetisms in a single flexible La0.67Sr0.33MnO3 thin film. ACS Appl Mater Interfaces, 11, 22677(2019).

    [104] G Dong, S Li, M Yao et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science, 366, 475(2019).

    Tianyao Zhang, Guang Yao, Taisong Pan, Qingjian Lu, Yuan Lin. Flexible inorganic oxide thin-film electronics enabled by advanced strategies[J]. Journal of Semiconductors, 2020, 41(4): 041602
    Download Citation