[1] J. D. Lindl. Inertial Confinement Fusion(1998).
[2] C. Cavailler. Inertial fusion with the LMJ. Plasma Phys. Controlled Fusion, 47, B389-B403(2005).
[3] Y. Chen, W. Dai, Z. Dang, X. Deng, B. Feng, L. Guo, D. Hu, H. Jia, F. Jing, D. Lin, L. Liu, Z. Peng, F. Wang, F. Wang, X. Wei, Y. Xiang, X. Xie, D. Xu, X. Yuan, R. Zhang, X. Zhang, W. Zheng, W. Zhou, Q. Zhu. Laser performance upgrade for precise ICF experiment in SG-III laser facility. Matter Radiat. Extremes, 2, 243-255(2017).
[4] Q. Fan, W. Fan, H. Huang, X. Jiao, Z. Jiao, D. Li, X. Li, Z. Lin, C. Liu, D. Liu, D. Liu, Z. Liu, X. Lu, W. Ma, X. Ouyang, L. Ren, M. Sun, M. Sun, H. Tao, B. Wang, J. Wang, L. Wang, X. Xie, G. Xu, L. Yang, P. Yang, G. Zhang, Y. Zhang, S. Zhou, B. Zhu, J. Zhu, J. Zhu, P. Zhu. Status and development of high-power laser facilities at the NLHPLP. High Power Laser Sci. Eng., 6, e55(2018).
[5] M. A. Barrios, J. W. Bates, E. M. Campbell, T. Chapman, R. Epstein, C. Goyon, M. Hohenberger, P. Michel, J. D. Moody, J. F. Myatt, J. E. Ralph, S. P. Regan, M. J. Rosenberg, W. Seka, R. W. Short, A. A. Solodov. Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments. Phys. Rev. Lett., 120, 055001(2018).
[6] A. V. Maximov, C. Ren, H. Wen, R. Yan. Linear regime of two-plasmon decay and stimulated Raman scattering instability near the quarter-critical density in plasmas. Phys. Plasmas, 22, 052704(2015).
[7] E. M. Campbell, M. E. Glinsky, J. Hammer, W. L. Kruer, R. J. Mason, M. D. Perry, M. Tabak, S. C. Wilks, J. Woodworth. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626-1634(1994).
[8] H. A. Baldis, S. Baton, M. Casanova, G. D. Enright, B. La Fontaine, C. Labaune, P. Mounaix, D. Pesme, W. Rozmus, D. M. Villeneuve. Stimulated Brillouin scattering in picosecond time scales: Experiments and modeling. Phys. Fluids B, 5, 3319-3327(1993).
[9] H. A. Baldis, S. D. Baton, S. Gary, B. La Fontaine, C. Labaune, M. Louis-Jacquet, P. Mounaix, D. Pesme, N. Renard, C. Rousseaux. Stimulated Brillouin scattering with a 1 ps laser pulse in a preformed underdense plasma. Phys. Rev. E, 49, R3602-R3605(1994).
[10] F. Amiranoff, S. D. Baton, G. Malka, J. L. Miquel, P. Mounaix, C. Rousseaux. Experimental validation of the linear theory of stimulated Raman scattering driven by a 500-fs laser pulse in a preformed underdense plasma. Phys. Rev. Lett., 74, 4655-4658(1995).
[11] J. C. Adam, F. Amiranoff, S. D. Baton, J. Fuchs, L. Gremillet, A. Héron, P. Mora, M. Rabec le Gloahec, C. Rousseaux. Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas. Phys. Plasmas, 9, 4261-4269(2002).
[12] J. C. Adam, F. Amiranoff, S. D. Baton, M. Casanova, L. Gremillet, A. Héron, P. Loiseau, M. Rabec Le Gloahec, C. Rousseaux. Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic. Phys. Rev. Lett., 97, 015001(2006).
[13] J. C. Adam, F. Amiranoff, S. D. Baton, D. Bénisti, L. Gremillet, A. Héron, C. Rousseaux, D. J. Strozzi. Experimental evidence of predominantly transverse electron plasma waves driven by stimulated Raman scattering of picosecond laser pulses. Phys. Rev. Lett., 102, 185003(2009).
[14] B. J. Albright, K. J. Bowers, W. Daughton, H. A. Rose, L. Yin. Saturation of backward stimulated scattering of a laser beam in the kinetic regime. Phys. Rev. Lett., 99, 265004(2007).
[15] B. B. Afeyan, F. Amiranoff, S. D. Baton, D. Bénisti, L. Gremillet, J. L. Kline, B. Loupias, D. S. Montgomery, F. Philippe, C. Rousseaux, V. Tassin. Experimental investigation of stimulated Raman and Brillouin scattering instabilities driven by two successive collinear picosecond laser pulses. Phys. Rev. E, 93, 043209(2016).
[16] K. S. Anderson, R. Betti, L. J. Perkins, A. A. Solodov, W. Theobald, C. D. Zhou. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).
[17] R. Betti, K. N. LaFortune, L. J. Perkins, W. H. Williams. Shock ignition: A new approach to high gain inertial confinement fusion on the National Ignition Facility. Phys. Rev. Lett., 103, 045004(2009).
[18] Z. F. Fan, X. T. He, K. Lan, J. W. Li, J. Liu, L. F. Wang, J. F. Wu, W. H. Ye. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion. Phys. Plasmas, 23, 082706(2016).
[19] D. E. Hinkel, A. B. Langdon. Nonlinear evolution of stimulated scatter in high-temperature plasmas. Phys. Rev. Lett., 89, 015003(2002).
[21] O. Klimo, J. Limpouch, V. T. Tikhonchuk, S. Weber. Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario. Plasma Phys. Controlled Fusion, 52, 055013(2010).
[22] L. Hao, J. Li, W. D. Liu, C. Ren, R. Yan. Nonlinear fluid simulation study of stimulated Raman and Brillouin scatterings in shock ignition. Phys. Plasmas, 24, 062709(2017).
[23] S. Ji, Z. Sheng, S. Weng, Y. Zhao, J. Zhu. Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma. High Power Laser Sci. Eng., 7, e20(2019).
[24] W. L. Kruer. The Physics of Laser Plasma Interactions(2003).
[25] J. C. Adam, V. K. Decyk, S. Deng, R. A. Fonseca, T. Katsouleas, S. Lee, W. Lu, W. B. Mori, C. Ren, L. O. Silva, F. S. Tsung. Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. Lect. Notes Comput. Sci., 2331, 342(2002).
[26] C. S. Liu, M. N. Rosenbluth, R. B. White. Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas. Phys. Fluids, 17, 1211(1974).
[27] J. A. Cobble, J. C. Fernández, R. J. Focia, R. P. Johnson, D. S. Montgomery, N. Renard-Legalloudec, H. A. Rose, D. A. Russell. Recent trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade. Phys. Plasmas, 9, 2311-2320(2002).