• Acta Optica Sinica
  • Vol. 41, Issue 17, 1727001 (2021)
Xiaodan Yang, Xiuyi Xu, and Qi Wei*
Author Affiliations
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.3788/AOS202141.1727001 Cite this Article Set citation alerts
    Xiaodan Yang, Xiuyi Xu, Qi Wei. Research on Eigenstates of Kramers-Henneberger Atoms in Linearly Polarized Laser Field[J]. Acta Optica Sinica, 2021, 41(17): 1727001 Copy Citation Text show less
    References

    [1] Jin F C, Yang H H, Zhang T et al. Dependence of above-threshold ionization spectra on frequencies of two-color laser fields[J]. Laser & Optoelectronics Progress, 57, 030201(2020).

    [2] Wang L, Xue J X, Zeng Z N et al. Generation of resonantly enhanced monochromatic high-order harmonics[J]. Chinese Journal of Lasers, 46, 1001003(2019).

    [3] Xu X H, Xia C L, Guo Z W et al. Spatial distribution of high-order harmonic controlled by chirped laser pulse and isolated attosecond pulse generation[J]. Chinese Journal of Lasers, 45, 0601007(2018).

    [4] Wu H T, Gong S Q, Jin S Q et al. ω-2ω two color phase control of ionization: comparison of tunneling and over the barrier regimes[J]. Acta Optica Sinica, 21, 897-900(2001).

    [5] Eberly J H, Kulander K C. Atomic stabilization by super-intense lasers[J]. Science, 262, 1229-1233(1993).

    [6] de Boer M, Hoogenraad J H, Vrijen R B et al. Indications of high-intensity adiabatic stabilization in neon[J]. Physical Review Letters, 71, 3263-3266(1993).

    [7] Gavrila M[M]. Atoms in intense laser fields, 435-455(1992).

    [8] Gavrila M. Atomic stabilization in superintense laser fields[J]. Journal of Physics B, 35, R147-R193(2002).

    [9] Henneberger W C. Perturbation method for atoms in intense light beams[J]. Physical Review Letters, 21, 838-841(1968).

    [10] Richter M. Imaging and controlling electronic and nuclear dynamics in strong laser fields[D]. Berlin: Technische Universitat Berlin, 47-67(2016).

    [11] van Duijn E, Gavrila M, Muller H G. Multiply charged negative ions of hydrogen induced by superintense laser fields[J]. Physical Review Letters, 77, 3759-3762(1996).

    [12] van Duijn E, Muller H. Appearance and structure of multiply charged negative ions of hydrogen in intense circularly polarized laser fields[J]. Physical Review A, 56, 2182-2191(1997).

    [13] Gavrila M, Shertzer J. Two-electron atoms in superintense radiation fields: dichotomy and stabilization[J]. Physical Review A, 53, 3431-3443(1996).

    [14] Wei Q, Kais S, Moiseyev N. Frequency-dependent stabilization of He - by a superintense laser field[J]. Physical Review A, 76, 013407(2007).

    [15] Shertzer J, Chandler A, Gavrila M. H2+in superintense laser fields: alignment and spectral restructuring[J]. Physical Review Letters, 73, 2039-2042(1994).

    [16] Yasuike T, Someda K. He-He chemical bonding in high-frequency intense laser fields[J]. Journal of Physics B, 37, 3149-3162(2004).

    [17] Wei Q, Kais S, Herschbach D. Dimensional scaling treatment of stability of simple diatomic molecules induced by superintense, high-frequency laser fields[J]. The Journal of Chemical Physics, 129, 214110(2008).

    [18] Balanarayan P, Moiseyev N. Strong chemical bond of stable He2 in strong linearly polarized laser fields[J]. Physical Review A, 85, 032516(2012).

    [19] Balanarayan P, Moiseyev N. Chemistry in high-frequency strong laser fields: the story of HeS molecule[J]. Molecular Physics, 111, 1814-1822(2013).

    [20] Smirnova O, Spanner M, Ivanov M. Molecule without electrons: binding bare nuclei with strong laser fields[J]. Physical Review Letters, 90, 243001(2003).

    [21] Wei Q, Kais S, Moiseyev N. New stable multiply charged negative atomic ions in linearly polarized superintense laser fields[J]. The Journal of Chemical Physics, 124, 201108(2006).

    [22] Wei Q, Kais S, Herschbach D. Dimensional scaling treatment of stability of atomic anions induced by superintense, high-frequency laser fields[J]. The Journal of Chemical Physics, 127, 094301(2007).

    [23] Wei Q, Herschbach D. Positronium in superintense high-frequency laser fields[J]. Molecular Physics, 111, 1835-1843(2013).

    [24] Pawlak M, Moiseyev N. Conditions for the applicability of the Kramers-Henneberger approximation for atoms in high-frequency strong laser fields[J]. Physical Review A, 90, 023401(2014).

    [25] Morales F, Richter M, Patchkovskii S et al. Imaging the Kramers-Henneberger atom[J]. Proceedings of the National Academy of Sciences of USA, 108, 16906-16911(2011).

    [26] Bogatskaya A V, Volkova E A, Popov A M. Prospects of odd and even harmonic generation by an atom in a high-intensity laser field[J]. Laser Physics Letters, 14, 055301(2017).

    [27] Li M, Wei Q. Stark effect of Kramers-Henneberger atoms[J]. The Journal of Chemical Physics, 148, 184307(2018).

    [28] Medišauskas L, Saalmann U, Rost J M. Floquet Hamiltonian approach for dynamics in short and intense laser pulses[J]. Journal of Physics B, 52, 015602(2019).

    [29] Toyota K, Tolstikhin O I, Morishita T et al. Slow electrons generated by intense high-frequency laser pulses[J]. Physical Review Letters, 103, 153003(2009).

    [30] Richter M, Patchkovskii S, Morales F et al. The role of the Kramers-Henneberger atom in the higher-order Kerr effect[J]. New Journal of Physics, 15, 083012(2013).

    [31] Matthews M, Morales F, Patas A et al. Amplification of intense light fields by nearly free electrons[J]. Nature Physics, 14, 695-700(2018).

    [32] Zimmermann H, Meise S, Khujakulov A et al. Limit on excitation and stabilization of atoms in intense optical laser fields[J]. Physical Review Letters, 120, 123202(2018).

    [33] Wei Q, Wang P X, Kais S et al. Pursuit of the Kramers-henneberger atom[J]. Chemical Physics Letters, 683, 240-246(2017).

    [34] Eichmann U, Nubbemeyer T, Rottke H et al. Acceleration of neutral atoms in strong short-pulse laser fields[J]. Nature, 461, 1261-1264(2009).

    [35] Wei Q, Wang P X, Kais S et al. -09-06)[2021-02-15], org/abs/1609, 01434(2016). https://arxiv.

    [36] Pont M, Walet N R, Gavrila M. Radiative distortion of the hydrogen atom in superintense, high-frequency fields of linear polarization[J]. Physical Review A, 41, 477-494(1990).

    [37] Førre M, Selstø S, Hansen J P et al. Exact nondipole Kramers-Henneberger form of the light-atom Hamiltonian: an application to atomic stabilization and photoelectron energy spectra[J]. Physical Review Letters, 95, 043601(2005).

    [38] Pont M, Gavrila M. The levels of atomic hydrogen in intense, high-frequency laser fields[J]. Physics Letters A, 123, 469-474(1987).

    [39] Pont M, Walet N R, Gavrila M et al. Dichotomy of the hydrogen atom in superintense, high-frequency laser fields[J]. Physical Review Letters, 61, 939-942(1988).

    Xiaodan Yang, Xiuyi Xu, Qi Wei. Research on Eigenstates of Kramers-Henneberger Atoms in Linearly Polarized Laser Field[J]. Acta Optica Sinica, 2021, 41(17): 1727001
    Download Citation