• Opto-Electronic Engineering
  • Vol. 51, Issue 2, 240027 (2024)
Lanqiang Zhang1、2、3, Yi Zeng1、2、3, Xiaohu Wu4, Jinsheng Yang1、2, Xiaoli Ruan1、2, Qiang Xin1、2, Naiting Gu1、2、3, and Changhui Rao1、2、3、*
Author Affiliations
  • 1National Laboratory on Adaptive Optics, Chengdu, Sichuan 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Shandong Institute of Advanced Technology, Jinan, Shandong 250100, China
  • show less
    DOI: 10.12086/oee.2024.240027 Cite this Article
    Lanqiang Zhang, Yi Zeng, Xiaohu Wu, Jinsheng Yang, Xiaoli Ruan, Qiang Xin, Naiting Gu, Changhui Rao. Progress in the research of testing and evaluation techniques for spaceborne gravitational wave telescopes[J]. Opto-Electronic Engineering, 2024, 51(2): 240027 Copy Citation Text show less
    References

    [1] The eLISA Consortium. The gravitational universe(2013). https://doi.org/10.48550/arXiv.1305.5720

    [2] C J Hogan. Gravitational wave sources from new physics. AIP Conf Proc, 873, 30-40(2006).

    [3] P Amaro-Seoane, J R Gair, M Freitag et al. Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA. Class Quantum Grav, 24, R113-R169(2007).

    [4] J Q Cheng, D H Yang. Progress in gravitational wave detection. Progr Astron, 23, 195-204.(2005).

    [5] A Abramovici, W E Althouse, R W P Drever et al. LIGO: The laser interferometer gravitational-wave observatory. Science, 256, 325-333(1992).

    [6] The LIGO Scientific Collaboration, J Aasi, B P Abbott et al. Advanced LIGO. Class Quantum Grav, 32, 074001(2015).

    [7] F Acernese, M Agathos, K Agatsuma et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav, 32, 024001(2014).

    [8] G Wanner. Complex optical systems in space: numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA, 1-106(2010). https://doi.org/10.15488/7550

    [9] O Jennrich. LISA technology and instrumentation. Class Quantum Grav, 26, 153001(2009).

    [10] J B Bayle, B Bonga, C Caprini et al. Overview and progress on the Laser Interferometer Space Antenna mission. Nat Astron, 6, 1334-1338(2022).

    [11] S Kawamura, M Ando, N Seto et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progr Theoret Exp Phys, 2021, 05A105(2021).

    [12] J Luo, L S Chen, H Z Duan et al. TianQin: a space-borne gravitational wave detector. Class Quantum Grav, 33, 035010(2016).

    [13] Z R Luo, Z K Guo, G Jin et al. A brief analysis to Taiji: Science and technology. Results Phys, 16, 102918(2020).

    [14] I E Sanz, A Heske, J C Livas. A telescope for LISA–the laser interferometer space antenna. Adv Opt Technol, 7, 395-400(2018).

    [15] Z C Fan, L J Zhao, S Y Cao et al. High performance telescope system design for the TianQin project. Class Quantum Grav, 39, 195017(2022).

    [16] Z Wang, W Sha, Z Chen et al. Preliminary design and analysis of telescope for space gravitational wave detection. Chin Opt, 11, 132-151.(2018).

    [17] J Livas, S Sankar. Optical telescope design study results. J Phys Conf Ser, 610, 012029(2015).

    [18] Y Zhao, J Shen, C Fang et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves. Appl Opt, 60, 438-444(2021).

    [19] Q Xiao, H Z Duan, M Ming et al. The analysis of the far-field phase and the tilt-to-length error contribution in space-based laser interferometry. Class Quantum Grav, 40, 065009(2023).

    [20] H Y Yan, Q F Chen, H Wang et al. Scattering model for stray light calculations in laser interferometry application to TianQin science interferometer. J Phys Conf Ser, 2464, 012008(2023).

    [21] J Livas, P Arsenovic, K Catellucci et al. Preliminary LISA telescope spacer design(2010).

    [22] J Sanjuán, A Preston, D Korytov et al. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope. Rev Sci Instrum, 82, 124501(2011).

    [23] J Sanjuán, D Korytov, G Mueller et al. Note: Silicon carbide telescope dimensional stability for space-based gravitational wave detectors. Rev Sci Instrum, 83, 116107(2012).

    [24] S R Sankar, J C Livas. Optical telescope design for a space-based gravitational-wave mission. Proc SPIE, 9143, 914314(2014).

    [25] J C Livas, S R Sankar. Optical telescope system-level design considerations for a space-based gravitational wave mission. Proc SPIE, 9904, 99041K(2016).

    [26] S Sankar, J Livas. Testing and characterization of a prototype telescope for the evolved Laser Interferometer Space Antenna (eLISA). Proc SPIE, 9904, 99045A(2016).

    [27] S R Sankar, J Livas. Optical alignment and wavefront error demonstration of a prototype LISA telescope. Class Quantum Grav, 37, 065005(2020).

    [28] A L Verlaan, H Hogenhuis, J Pijnenburg et al. LISA telescope assembly optical stability characterization for ESA. Proc SPIE, 10564, 105640K(2017).

    [29] S Kulkarni, A A Umińska, J Sanjuán et al. Characterization of dimensional stability for materials used in ultra-stable structures. Proc SPIE, 11820, 1182008(2021).

    [30] S Kulkarni, A Umińska, J Gleason et al. Ultrastable optical components using adjustable commercial mirror mounts anchored in a ULE spacer. Appl Opt, 59, 6999-7003(2020).

    [31] S Kulkarni. Technology development for ground verification of dimensional stability of the LISA telescope(2022).

    [32] A A Umińska, S Kulkarni, J Sanjuan et al. Ground testing of the LISA telescope. Proc SPIE, 11820, 118200I(2021).

    [33] B L Sang, X Q Deng, B Peng et al. Dimensional stability ground test and in-orbit prediction of SiC telescope frame for space gravitational wave detection. IEEE Access, 10, 21041-21047(2022).

    [34] J Shen, Y Zhao, H S Liu et al. Multi-channel thermal deformation interference measurement of the telescope supporting frame in spaceborne gravitational wave detection. Microgr Sci Technol, 34, 59(2022).

    [35] A A Uminska, S Kulkarni, J Gleason et al. Telescope testing for the LISA mission, 65(2020).

    [36] B L Sang, X Q Deng, W Tao et al. Stray light analysis and suppression of Taiji telescope for space gravitational wave detection based on phase noise requirement. Appl Sci, 13, 2923(2023).

    [37] J Livas, LISA Telescope Team. LISA telescope technology development program, 151(2021).

    [38] X Y Wang, S J Bai, Q Zhang et al. Research progress of telescopes for space-based gravitational wave missions. Opto-Electron Eng, 50, 230219.(2023).

    [39] W T Fan, H C Zhao, L Fan et al. Preliminary analysis of space gravitational wave detection telescope system technology. Acta Sci Nat Univ Sunyat, 60, 178-185.(2021).

    [40] B H Li, J Luo, M Y Qiu et al. Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope. Opto-Electron Eng, 50, 230155.(2023).

    [41] Z C Fan, H Tan, Y Mo et al. Design theory and method of off-axis four-mirror telescope for space-based gravitational-wave mission. Opto-Electron Eng, 50, 230194.(2023).

    [42] C P Sasso, G Mana, S Mottini. Coupling of wavefront errors and jitter in the LISA interferometer: far-field propagation. Class Quantum Grav, 35, 185013(2018).

    [43] J Y Vinet, N Christensen, N Dinu-Jaeger et al. LISA telescope: phase noise due to pointing jitter. Class Quantum Grav, 36, 205003(2019).

    [44] Z W Chen, R K Leng, C X Yan et al. Analysis of telescope wavefront aberration and optical path stability in space gravitational wave detection. Appl Sci, 12, 12697(2022).

    [45] Y Zhao, J Shen, C Fang et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves. Opt Express, 28, 25545-25561(2020).

    [46] C P Sasso, G Mana, S Mottini. The LISA interferometer: impact of stray light on the phase of the heterodyne signal. Class Quantum Grav, 36, 075015(2019).

    [47] A L Verlaan, S Lucarelli. Lisa telescope assembly optical stability characterization for ESA. Proc SPIE, 10563, 105634C(2017).

    [48] D Weise, P Marenaci, P Weimer et al. Opto-mechanical architecture of the LISA instrument. Proc SPIE, 10566, 1056611(2017).

    [49] K Jersey, Y Q Zhang, I Harley-Trochimczyk et al. Design, fabrication, and testing of an optical truss interferometer for the LISA telescope. Proc SPIE, 11820, 118200L(2021).

    [50] K Zhao, W T Fan, H W Hai et al. Design of optical path stability measurement scheme and theoretical analysis of noise in telescope. Opto-Electron Eng, 50, 230158.(2023).

    [51] A Spector, G Mueller. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors. Class Quantum Grav, 29, 205005(2012).

    [52] S R Sankar, J C Livas. Initial progress with numerical modelling of scattered light in a candidate eLISA telescope. J. Phys. Conf. Ser., 610, 012031(2015).

    [53] Z R Bush, S Barke, H Hollis et al. Coherent detection of ultraweak electromagnetic fields. Phys Rev D, 99, 022001(2019).

    [54] Y H Zhang, Z Q Zhong, B Zhang. Analysis of surface scattering characteristics of ultra-smooth optical components in gravitational wave detection system. Opto-Electron Eng, 50, 230222.(2023).

    [55] J S Xu, Z W Hu, T Xu et al. Test method of stray light on mirror surface of laser gravitational wave telescope. Infrar Laser Eng, 48, 913001.(2019).

    [56] Y Gong, B C Li. Continuous-wave cavity ring-down technique for accurate measurement of high reflectivity. Chin. J. Lasers, 33, 1247-1250.(2006).

    [57] B C Li, Y Gong. Review of cavity ring-down techniques for high reflectivity measurements. Laser Optoelectron Progr, 47, 021203.(2010).

    Lanqiang Zhang, Yi Zeng, Xiaohu Wu, Jinsheng Yang, Xiaoli Ruan, Qiang Xin, Naiting Gu, Changhui Rao. Progress in the research of testing and evaluation techniques for spaceborne gravitational wave telescopes[J]. Opto-Electronic Engineering, 2024, 51(2): 240027
    Download Citation