• Opto-Electronic Engineering
  • Vol. 51, Issue 2, 240027 (2024)
Lanqiang Zhang1、2、3, Yi Zeng1、2、3, Xiaohu Wu4, Jinsheng Yang1、2, Xiaoli Ruan1、2, Qiang Xin1、2, Naiting Gu1、2、3, and Changhui Rao1、2、3、*
Author Affiliations
  • 1National Laboratory on Adaptive Optics, Chengdu, Sichuan 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Shandong Institute of Advanced Technology, Jinan, Shandong 250100, China
  • show less
    DOI: 10.12086/oee.2024.240027 Cite this Article
    Lanqiang Zhang, Yi Zeng, Xiaohu Wu, Jinsheng Yang, Xiaoli Ruan, Qiang Xin, Naiting Gu, Changhui Rao. Progress in the research of testing and evaluation techniques for spaceborne gravitational wave telescopes[J]. Opto-Electronic Engineering, 2024, 51(2): 240027 Copy Citation Text show less
    Gravitational wave spectrum
    Fig. 1. Gravitational wave spectrum
    Developing space gravitational wave detectors
    Fig. 2. Developing space gravitational wave detectors
    Schematic diagram of space gravitational wave detectors. (a) Triangular constellation and six links of detectors; (b) Laser links between two spacecrafts[9]
    Fig. 3. Schematic diagram of space gravitational wave detectors. (a) Triangular constellation and six links of detectors; (b) Laser links between two spacecrafts[9]
    Main research progress of spaceborne telescopes for gravitational wave detection[15-18,21-36]
    Fig. 4. Main research progress of spaceborne telescopes for gravitational wave detection[15-18,21-36]
    Space gravitational wave detection spaceborne telescope ground integrated test platform
    Fig. 5. Space gravitational wave detection spaceborne telescope ground integrated test platform
    LISA telescope assembly dimensional stability test by Verlaan et al. (a) Schematic of TA’s length metrology platform; (b) Thermal vacuum test scheme[28,47]
    Fig. 6. LISA telescope assembly dimensional stability test by Verlaan et al. (a) Schematic of TA’s length metrology platform; (b) Thermal vacuum test scheme[28,47]
    Optical path length stability test of LISA telescope based on heterodyne interferometry at the University of Florida. (a) Schematic of optical path length stability test platform; (b) ULE proto-TTS[32]
    Fig. 7. Optical path length stability test of LISA telescope based on heterodyne interferometry at the University of Florida. (a) Schematic of optical path length stability test platform; (b) ULE proto-TTS[32]
    TTS and dimension test result of ULE pTTS. (a) OptoCAD model of TTS; (b) Length noise test results of reference cavity and ULE pTTS and LISA requirement[32]
    Fig. 8. TTS and dimension test result of ULE pTTS. (a) OptoCAD model of TTS; (b) Length noise test results of reference cavity and ULE pTTS and LISA requirement[32]
    Stability test of SiC frame of Taiji telescope based on fiber interferometer by Sang et al. (a) Principle of stability testing with fiber optic interferometer; (b) Schematic of the frame stability test platform; (c)Test platform pictures[33]
    Fig. 9. Stability test of SiC frame of Taiji telescope based on fiber interferometer by Sang et al. (a) Principle of stability testing with fiber optic interferometer; (b) Schematic of the frame stability test platform; (c)Test platform pictures[33]
    SiC frame dimensional stability test and numerical simulation results. (a) Power spectrum of room temperature environment test; (b) Power spectrum of in-orbit numerical simulation[33]
    Fig. 10. SiC frame dimensional stability test and numerical simulation results. (a) Power spectrum of room temperature environment test; (b) Power spectrum of in-orbit numerical simulation[33]
    Dimensional stability test of Taiji telescope’s C/SiC support frame by Shen et al. (a) The thermal design of the test structure; (b) The multi-channel heterodyne interferometer test platform[34]
    Fig. 11. Dimensional stability test of Taiji telescope’s C/SiC support frame by Shen et al. (a) The thermal design of the test structure; (b) The multi-channel heterodyne interferometer test platform[34]
    Schematic of the optical path length stability measurement scheme for the space gravitational wave detection spaceborne telescope[50]
    Fig. 12. Schematic of the optical path length stability measurement scheme for the space gravitational wave detection spaceborne telescope[50]
    Schematic of the coherent stray light detection based on the heterodyne interferometry[35]
    Fig. 13. Schematic of the coherent stray light detection based on the heterodyne interferometry[35]
    望远镜口径光程稳定性要求杂散光要求波前误差指向偏差
    LISA30 cm1pm/Hz1/2×1+(3mHzf)4<10−10λ/3010 nrad/Hz1/2
    天琴22 cm1pm/Hz1/2@0.1mHz1Hz<10−10λ/30
    太极20 cm1pm/Hz1/2×1+(3mHzf)4<10−10λ/30
    Table 1. Key indicators of spaceborne telescopes for space gravitational wave detection[14-20]
    PerformanceRequirement1st test2nd test2nd test re-run
    CTE over 100 K/(1/K)<10−79.8×10−85.7×10−86.9×10−8
    M1-M2 Longitudinal displacement dz/μm<5−7.6−8.5−7.4
    M1-M2 Lateral displacement dy/μm<2 (goal)−25.7−26.3−26.2
    M1-M2 Rotation dRx/μrad<20134.4−57.3−47.2
    Table 2. CFRP telescope assembly structure thermo-mechanical requirements and tested performances[47]
    Lanqiang Zhang, Yi Zeng, Xiaohu Wu, Jinsheng Yang, Xiaoli Ruan, Qiang Xin, Naiting Gu, Changhui Rao. Progress in the research of testing and evaluation techniques for spaceborne gravitational wave telescopes[J]. Opto-Electronic Engineering, 2024, 51(2): 240027
    Download Citation