• Photonics Research
  • Vol. 4, Issue 3, 0A36 (2016)
E. Castro-Camus1、* and M. Alfaro2
Author Affiliations
  • 1Centro de Investigaciones en Optica A.C., Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato 37150, Mexico
  • 2Departamento de Matematicas y Fisica, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Av. Universidad #940, Ciudad Universitaria, C.P. 20131, Aguascalientes, AGS, Mexico
  • show less
    DOI: 10.1364/prj.4.000a36 Cite this Article Set citation alerts
    E. Castro-Camus, M. Alfaro. Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited][J]. Photonics Research, 2016, 4(3): 0A36 Copy Citation Text show less
    References

    [1] J. M. Chamberlain. Where optics meets electronics: recent progress in decreasing the terahertz gap. Philos. Trans. R. Soc. A, 362, 199-213(2004).

    [2] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [3] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photon. Rev., 5, 124-166(2011).

    [4] D. H. Auston, P. R. Smith. Generation and detection of millimeter waves by picosecond photoconductivity. Appl. Phys. Lett., 43, 631-633(1983).

    [5] D. H. Auston. Impulse-response of photoconductors in transmission-lines. IEEE J. Quantum Electron., 19, 639-648(1983).

    [6] D. H. Auston, K. P. Cheung, P. R. Smith. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett., 45, 284-286(1984).

    [7] M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, M. Hangyo. Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices. J. Infrared Millimeter Terahertz Waves, 33, 393-404(2012).

    [8] K. P. Cheung, D. H. Auston. A novel technique for measuring far-infrared absorption and dispersion. Infrared Phys., 26, 23-27(1986).

    [9] L. Duvillaret, F. Garet, J.-L. Coutaz. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron., 2, 739-746(1996).

    [10] D. H. Auston, M. C. Nuss. Electrooptic generation and detection of femtosecond electrical transients. IEEE J. Quantum Electron., 24, 184-197(1988).

    [11] J. Dai, J. Liu, X.-C. Zhang. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE J. Sel. Top. Quantum Electron., 17, 183-190(2011).

    [12] R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature, 414, 286-289(2001).

    [13] C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, A. Leitenstorfer. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2. Phys. Rev. Lett., 99, 116401(2007).

    [14] L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, U. Welp. Emission of coherent THz radiation from superconductors. Science, 318, 1291-1293(2007).

    [15] J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, C. Jagadish. Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy. Appl. Phys. Lett., 106, 202103(2015).

    [16] B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, P. U. Jepsen. Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol., 20, S246(2005).

    [17] M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, E. H. Linfield. Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy. Chem. Phys. Lett., 377, 256-262(2003).

    [18] E. Castro-Camus, M. Palomar, A. Covarrubias. Leaf water dynamics of arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy. Sci. Rep., 3, 2910(2013).

    [19] R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, E. Castro-Camus. Determination of leaf water content from terahertz time-domain spectroscopic data. J. Infrared Millimeter Terahertz Waves, 34, 316-323(2013).

    [20] R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, M. Pepper. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol., 47, 3853-3863(2002).

    [21] B. Born, M. Havenith. Terahertz dance of proteins and sugars with water. J. Infrared Millimeter Terahertz Waves, 30, 1245-1254(2009).

    [22] R. J. Falconer, A. G. Markelz. Terahertz spectroscopic analysis of peptides and proteins. J. Infrared Millimeter Terahertz Waves, 33, 973-988(2012).

    [23] K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, T. Sudou. Real-time terahertz imaging for art conservation science. J. Eur. Opt. Soc., 3, 08027(2008).

    [24] K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, W. Viöl. Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology. Sci. Rep., 5, 14842(2015).

    [25] C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstorfer. Direct sampling of electric-field vacuum fluctuations. Science, 350, 420-423(2015).

    [26] M. Schwerdtfeger, S. Lippert, M. Koch, A. Berg, S. Katletz, K. Wiesauer. Terahertz time-domain spectroscopy for monitoring the curing of dental composites. Biomed. Opt. Express, 3, 2842-2850(2012).

    [27] E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, M. B. Johnston. Photoconductive response correction for detectors of terahertz radiation. J. Appl. Phys., 104, 053113(2008).

    [28] I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, M. Missous. High resistivity annealed low-temperature GaAs with 100  fs lifetimes. Appl. Phys. Lett., 83, 4199-4201(2003).

    [29] Y. Kamo, S. Kitazawa, S. Ohshima, Y. Hosoda. Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates. Jpn. J. Appl. Phys., 53, 032201(2014).

    [30] W. Hou, L. Shi. An lt-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Trans. Electron Devices, 60, 1619-1624(2013).

    [31] Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Appl. Phys. Lett., 85, 164-166(2004).

    [32] N. Wang, M. Jarrahi. Noise analysis of photoconductive terahertz detectors. J. Infrared Millimeter Terahertz Waves, 34, 519-528(2013).

    [33] M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, A. Chaudhary. Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation. Opt. Mater., 36, 596-601(2014).

    [34] P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, K. M. Dani. 20  THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas. Opt. Express, 22, 26358-26364(2014).

    [35] S. A. F. Sirbu, M. Lepaul. Coupling 3-d Maxwell’s and Boltzmann’s equations for analyzing a terahertz photoconductive switch. IEEE Trans. Microwave Theory Tech., 53, 2991-2998(2005).

    [36] Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, A. G. Davies. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Appl. Phys. Lett., 83, 3117-3119(2003).

    [37] M. Tani, K.-S. Lee, X.-C. Zhang. Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 ?m probe. Appl. Phys. Lett., 77, 1396-1398(2000).

    [38] J. Zhang, Y. Hong, S. Braunstein, K. Shore. Terahertz pulse generation and detection with lt-GaAs photoconductive antenna. IEE Proceedings of Optoelectronics, 151, 98-101(2004).

    [39] J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices. Appl. Phys. Lett., 88, 251119(2006).

    [40] R. J. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, M. Schell. Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6  THz bandwidth and 90db dynamic range. Opt. Express, 22, 19411-19422(2014).

    [41] I. Kostakis, D. Saeedkia, M. Missous. Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 pulse excitation. IEEE Trans. Terahertz Sci. Technol., 2, 617-622(2012).

    [42] A. Singh, S. Pal, H. Surdi, S. S. Prabhu, S. Mathimalar, V. Nanal, R. G. Pillay, G. Döhler. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Opt. Express, 23, 6656-6661(2015).

    [43] T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, C.-L. Pan. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Appl. Phys. Lett., 83, 1322-1324(2003).

    [44] J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, M. B. Johnston. Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission. Phys. Rev. B, 70, 235330(2004).

    [45] M. Suzuki, M. Tonouchi. Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  m femtosecond optical pulses. Appl. Phys. Lett., 86, 163504(2005).

    [46] E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, M. B. Johnston. An ion-implanted InP receiver for polarization resolved terahertz spectroscopy. Opt. Express, 15, 7047-7057(2007).

    [47] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, Y. Kadoya. Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation. Appl. Phys. Lett., 91, 011102(2007).

    [48] D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, M. B. Johnson. Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy. Appl. Phys. Lett., 85, 3839-3841(2004).

    [49] A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, A. Krotkus. GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths. Appl. Phys. Express, 5, 022601(2012).

    [50] K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, S. Marcinkevicius. GaBiAs: a material for optoelectronic terahertz devices. Appl. Phys. Lett., 88, 201112(2006).

    [51] M. Kinch, S. Borrello, B. Breazeale, A. Simmons. Geometrical enhancement of hgcdte photoconductive detectors. Infrared Phys., 17, 137-145(1977).

    [52] X. Ropagnol, M. Bouvier, M. Reid, T. Ozaki. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. J. Appl. Phys., 116, 043107(2014).

    [53] N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, J. E. Cunningham. On-chip picosecond pulse detection and generation using graphene photoconductive switches. Nano Lett., 15, 1591-1596(2015).

    [54] A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, T. Palacios. Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas. IEEE Trans. Nanotechnol., 14, 390-396(2015).

    [55] F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [56] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, M. B. Johnston. Single nanowire photoconductive terahertz detectors. Nano Lett., 15, 206-210(2015).

    [57] C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, M. B. Johnston. Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation. IEEE J. Sel. Top. Quantum Electron., 17, 17-21(2011).

    [58] F. D. Brunner, T. Feurer. Antireflection coatings optimized for single-cycle THz pulses. Appl. Opt., 52, 3829-3832(2013).

    [59] O. Mitrofanov, I. Brener, T. S. Luk, J. L. Reno. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity. ACS Photon., 2, 1763-1768(2015).

    [60] M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, M. Tonouchi. Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films. J. Infrared Millimeter Terahertz Waves, 36, 423-429(2015).

    [61] J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, M. B. Johnston. Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs. Appl. Phys. Lett., 89, 232102(2006).

    [62] M. Bieler, G. Hein, K. Pierz, U. Siegner, M. Koch. Spatial pattern formation of optically excited carriers in photoconductive switches. Appl. Phys. Lett., 77, 1002-1004(2000).

    [63] Z. Piao, M. Tani, K. Sakai. Carrier dynamics and terahertz radiation in photoconductive antennas. Jpn. J. Appl. Phys., 39, 96-100(2000).

    [64] M. Koch, M. Bieler, G. Hein, K. Pierz, U. Siegner. Photoconductive switches: the role of spatial effects in carrier dynamics. Phys. Status Solidi B, 221, 429-433(2000).

    [65] E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston. Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Phys. Rev. B, 71, 195301(2005).

    [66] J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston. Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches. Solid State Commun., 136, 595-600(2005).

    [67] M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, S. Winnerl. Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m. Appl. Phys. Lett., 103, 251114(2013).

    [68] D. S. Kim, D. S. Citrin. Coulomb and radiation screening in photoconductive terahertz sources. Appl. Phys. Lett., 88, 161117(2006).

    [69] E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, S. Garca. On the numerical modeling of terahertz photoconductive antennas. J. Infrared Millimeter Terahertz Waves, 35, 432-444(2014).

    [70] E. Castro-Camus, M. Johnston, J. Lloyd-Hughes. Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers. Semicond. Sci. Technol., 27, 115011(2012).

    [71] F. Zangeneh-Nejad, N. Barani, R. Safian. Temperature dependence of electromagnetic radiation from terahertz photoconductive antennas. Microwave Opt. Technol. Lett., 57, 2475-2479(2015).

    [72] V. Malevich, G. Sinitsyn. Response speed of terahertz photoconductive receiver antennas when excited by femtosecond laser pulses. J. Appl. Spectrosc., 80, 289-293(2013).

    [73] M. Tani, S. Matsuura, K. Sakai, S. Nakashima. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt., 36, 7853-7859(1997).

    [74] R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, T. Hattori. Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity. J. Appl. Phys., 97, 103103(2005).

    [75] J. Vanrudd, J. L. Johnson, D. M. Mittleman. Cross-polarized angular emission patterns from lens-coupled terahertz antennas. J. Opt. Soc. Am. B, 18, 1524-1533(2001).

    [76] A. Dreyhaupt, S. Winnerl, M. Helm, T. Dekorsy. Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device. Opt. Lett., 31, 1546-1548(2006).

    [77] M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, T. Dekorsy. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Opt. Express, 18, 9251-9257(2010).

    [78] B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, T. E. Darcie. Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett., 12, 6255-6259(2012).

    [79] C. Berry, N. Wang, M. Hashemi, M. Unlu, M. Jarrahi. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun., 4, 1622(2013).

    [80] M. Jarrahi. Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators. IEEE Trans. Terahertz Sci. Technol., 5, 391-397(2015).

    [81] S. Jafarlou, M. Neshat, S. Safavi-Naeini. A hybrid analysis method for plasmonic enhanced terahertz photomixer sources. Opt. Express, 21, 11115-11124(2013).

    [82] S.-H. Yang, M. R. Hashemi, C. W. Berry, M. Jarrahi. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Trans. Terahertz Sci. Technol., 4, 575-581(2014).

    [83] S.-G. Park, Y. Choi, Y.-J. Oh, K.-H. Jeong. Terahertz photoconductive antenna with metal nanoislands. Opt. Express, 20, 25530-25535(2012).

    [84] A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, R. Gordon. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection. Nano Lett., 15, 8306-8310(2015).

    [85] K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, K. H. Park. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices. Sci. Rep., 5, 13817(2015).

    [86] S. Corzo-Garcia, M. Alfaro, E. Castro-Camus. Transit time enhanced bandwidth in nanostructured terahertz emitters. J. Infrared Millimeter Terahertz Waves, 35, 987-992(2014).

    [87] E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, C. Jagadish. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Appl. Phys. Lett., 86, 254102(2005).

    [88] H. Makabe, Y. Hirota, M. Tani, M. Hangyo. Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna. Opt. Express, 15, 11650-11657(2007).

    [89] G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, M. Tani. A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis. Opt. Express, 23, 16184-16195(2015).

    [90] A. Hussain, S. R. Andrews. Ultrabroadband polarization analysis of terahertz pulses. Opt. Express, 16, 7251-7257(2008).

    [91] E. Castro-Camus. Polarization-resolved terahertz time-domain spectroscopy. J. Infrared Millimeter Terahertz Waves, 33, 418-430(2012).

    [92] Y. Hirota, R. Hattori, M. Tani, M. Hangyo. Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna. Opt. Express, 14, 4486-4493(2006).

    [93] S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, M. Helm. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Opt. Express, 17, 1571-1576(2009).

    [94] K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, H. Toyokawa. Radially polarized terahertz waves from a photoconductive antenna with microstructures. Appl. Phys. Lett., 102, 221118(2013).

    [95] J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, K. W. Plaxco. Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery. Astrobiology, 3, 489-504(2003).

    [96] J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, K. Plaxco. Terahertz circular dichroism spectroscopy of biomolecules. Optical Technologies for Industrial, Environmental, and Biological Sensing, 19-26(2004).

    [97] M. Scheller, S. F. Dürrschmidt, M. Stecher, M. Koch. Terahertz quasi-time-domain spectroscopy imaging. Appl. Opt., 50, 1884-1888(2011).

    E. Castro-Camus, M. Alfaro. Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited][J]. Photonics Research, 2016, 4(3): 0A36
    Download Citation