• Journal of Inorganic Materials
  • Vol. 35, Issue 6, 682 (2020)
Shilin TAN, Shunda YIN, and Gang OUYANG*
Author Affiliations
  • Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China
  • show less
    DOI: 10.15541/jim20190386 Cite this Article
    Shilin TAN, Shunda YIN, Gang OUYANG. Size Effect on the Interface Modulation of Interlayer and Auger Recombination Rates in MoS2/WSe2 van der Waals Heterostructures[J]. Journal of Inorganic Materials, 2020, 35(6): 682 Copy Citation Text show less
    References

    [1] Y LI M, H CHEN C, Y SHI et al. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today, 19, 322-335(2016).

    [2] F MAK K, C LEE, J HONE et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [3] M XIAO, Z SUN R, F LI Y et al. Transfer printing of VO2 thin films using MoS2/SiO2 van der Waals heterojunctions. J. Inorg. Mater., 34, 1161-1166(2019).

    [4] Y ZHAO, W YU, G OUYANG. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures. J. Phys. D: Appl. Phys., 51, 015111(2017).

    [5] G CAO, A SHANG, C ZHANG et al. Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices. Nano Energy, 30, 260-266(2016).

    [6] M FURCHI M, A ZECHMEISTER A, F HOELLER et al. Photovoltaics in van der Waals heterostructures. IEEE J. Sel. Top. Quantum Electron., 23, 106-116(2016).

    [7] Q CHEN, Q LI, Y YANG et al. Effects of AlGaN interlayer on scattering mechanisms in InAlN/AlGaN/GaN heterostructures. Acta Phys. Sin., 68, 017301(2019).

    [8] H FANG, C BATTAGLIA, C CARRARO et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci., 111, 6198-6202(2014).

    [9] S LATINI, T WINTHER K, T OLSEN et al. Interlayer excitons and band alignment in MoS2/h-BN/WSe2 van der Waals heterostructures. Nano Lett., 17, 938-945(2017).

    [10] Y KIM J, G KIM S, W YOUN J et al. Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array. Appl. Phys. Lett., 112, 193101(2018).

    [11] L YANG, X YU, M XU et al. Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. J. Mater. Chem. A, 2, 16877-16883(2014).

    [12] H MENG J, X LIU, W ZHANG X et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy, 28, 44-50(2016).

    [13] F SUN W, C LI M, C ZHAO L. First-principles investigation of carrier Auger lifetime and impact ionization rate in narrow-gap superlattices. Acta Phys. Sin., 59, 5661-5666(2010).

    [14] Y HE, G OUYANG. Geometry-dependent Auger recombination process in semiconductor nanostructures. J. Phys. Chem. C, 121, 23811-23816(2017).

    [16] Q LI, T LIAN. Area- and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: breaking the “universal volume scaling law”. Nano Lett., 17, 3152-3158(2017).

    [17] D LIU S, T CHENG M, J ZHOU H et al. The effect of biexciton, wetting layer leakage and Auger capture on Rabi oscillation damping in quantum dots. Acta Phys. Sin., 55, 2122-2127(2006).

    [18] M DENNIS A, D MANGUM B, A PIRYATINSKI et al. Suppressed blinking and Auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett., 12, 5545-5551(2012).

    [19] S PARK Y, K BAE W, A PADILHA L et al. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett., 14, 396-402(2014).

    [20] A JAIN, O VOZNYY, S HOOGLAND et al. Atomistic design of CdSe/CdS core-shell quantum dots with suppressed Auger recombination. Nano Lett., 16, 6491-6496(2016).

    [21] R VAXENBURG, A RODINA, E LIFSHITZ et al. Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals. Nano Lett., 16, 2503-2511(2016).

    [22] M PELTON, J ANDREWS J, I FEDIN et al. Nonmonotonic dependence of Auger recombination rate on shell thickness for CdSe/CdS core/shell nanoplatelets. Nano Lett., 17, 6900-6906(2017).

    [23] R BEATTIE A, T LANDSBERG P. Auger effect in semiconductors. Proc. R. Soc. London. Ser. A, 249, 16-29(1959).

    [24] N LU, H GUO, L WANG et al. Van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation. Nanoscale, 6, 4566-4571(2014).

    [25] Q SUN C. Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem., 35, 1-159(2007).

    [26] G OUYANG, X WANG C, W YANG G. Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev., 109, 4221-4247(2009).

    [27] A ZHANG, Z ZHU, Y HE et al. Structure stabilities and transitions in polyhedral metal nanocrystals: an atomic-bond-relaxation approach. Appl. Phys. Lett., 100, 171912(2012).

    [28] Z ZHU, A ZHANG, G OUYANG et al. Edge effect on band gap shift in Si nanowires with polygonal cross-sections. Appl. Phys. Lett., 98, 263112(2011).

    [29] I CHEPIC D, L EFROS A, I EKIMOV A et al. Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumin., 47, 113-127(1990).

    [30] G OUYANG, G ZHU W, Q SUN C et al. Atomistic origin of lattice strain on stiffness of nanoparticles. Phys. Chem. Chem. Phys., 12, 1543-1549(2010).

    [31] M DANOVICH, V ZÓLYOMI, V I FAL’KO et al. Auger recombination of dark excitons in WS2 and WSe2 monolayers. 2D Materials, 3, 035011(2016).

    [32] C JIN, J KIM, K WU et al. On optical dipole moment and radiative recombination lifetime of excitons in WSe2. Adv. Funct. Mater., 27, 1601741(2017).

    [33] H HUR J, J PARK, S JEON. A theoretical modeling of photocurrent generation and decay in layered MoS2 thin-film transistor photosensors. J. Phys. D: Appl. Phys., 50, 065105(2017).

    [34] N GUO, J WEI, Y JIA et al. Fabrication of large area hexagonal boron nitride thin films for bendable capacitors. Nano Research, 6, 602-610(2013).

    [35] T KIRCHARTZ, J MATTHEIS, U RAU. Detailed balance theory of excitonic and bulk heterojunction solar cells. Phys. Rev. B, 78, 235320(2008).

    [36] G ZEGRYA G, D ANDREEV A. Mechanism of suppression of Auger recombination processes in type-II heterostructures. Appl. Phys. Lett., 67, 2681-2683(1995).

    [37] Y HE, J QUAN, G OUYANG. The atomistic origin of interface confinement and enhanced conversion efficiency in Si nanowire solar cells. Phys. Chem. Chem. Phys., 18, 7001-7006(2016).

    [38] C ZHANG, L FU, S ZHAO et al. Controllable Co-segregation synthesis of wafe-scale hexagonal boron nitride thin films. Adv. Mater., 26, 1776-1781(2014).

    [39] J KANG, S TONGAY, J ZHOU et al. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett., 102, 012111(2013).

    [40] J WANG, F MA, W LIANG et al. Optical, photonic and optoelectronic properties of graphene, h-BN and their hybrid materials. Nanophotonics, 6, 943-976(2017).

    [41] A VU Q, H LEE J, L NGUYEN V et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity. Nano Lett., 17, 453-459(2016).

    [42] S DAS, A PRAKASH, R SALAZAR et al. Towards low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano, 8, 1681-1689(2014).

    [43] S CHOI M, H LEE G, J YU Y et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun., 4, 1624(2013).

    [44] S YUN W, W HAN S, C HONG S et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te). Phys. Rev. B, 85, 033305(2012).

    [45] F GARCÍA-SANTAMARÍA, S BROVELLI, R VISWANATHA et al. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface. Nano Lett., 11, 687-693(2011).

    [46] W COHN A, D RINEHART J, M SCHIMPF A et al. Size dependence of negative trion Auger recombination in photodoped CdSe nanocrystals. Nano Lett., 14, 353-358(2013).

    [47] Y HE, S HU, T HAN et al. Suppression of the Auger recombination process in CdSe/CdS core/shell nanocrystals. ACS Omega, 4, 9198-9203(2019).

    Shilin TAN, Shunda YIN, Gang OUYANG. Size Effect on the Interface Modulation of Interlayer and Auger Recombination Rates in MoS2/WSe2 van der Waals Heterostructures[J]. Journal of Inorganic Materials, 2020, 35(6): 682
    Download Citation