• Photonic Sensors
  • Vol. 11, Issue 4, 457 (2021)
Mojtaba HOSSEINZADEH SANI1, Hamed SAGHAEI2、*, Mohammad Amin MEHRANPOUR3, and Afsaneh ASGARIYAN TABRIZI4
Author Affiliations
  • 1Department of Electrical Engineering, Imam Reza International University, Mashhad 9138833186, Iran
  • 2Department of Electrical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord 8813733395, Iran
  • 3Department of Electrical Engineering, Sari Branch, Islamic Azad University, Sari 4816119318, Iran
  • 4Academic Center for Education, Culture, and Research (ACECR), Tabriz 5156845195, Iran
  • show less
    DOI: 10.1007/s13320-020-0607-0 Cite this Article
    Mojtaba HOSSEINZADEH SANI, Hamed SAGHAEI, Mohammad Amin MEHRANPOUR, Afsaneh ASGARIYAN TABRIZI. A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers[J]. Photonic Sensors, 2021, 11(4): 457 Copy Citation Text show less
    References

    [1] C. M. Soukoulis, Photonic crystals and light localization in the 21st century. Germany: Springer Science & Business Media, 2001: 563.

    [2] K. Sakoda, Optical properties of photonic crystals. Germany: Springer Science & Business Media, 2001: 80.

    [3] M. R. Rakhshani and M. A. Mansouri-Birjandi, “Realization of tunable optical filter by photonic crystal ring resonators,” Optik, 2013, 124(22): 5377–5380.

    [4] S. Naghizade and S. M. Sattari-Esfahlan, “Excellent quality factor ultra-compact optical communication filter on ring-shaped cavity,” Journal of Optical Communications, 2019, 40(1): 21–25.

    [5] S. Naghizade and S. M. Sattari-Esfahlan, “Loss-less elliptical channel drop filter for WDM applications,” Journal of Optical Communications, 2019, 40(4): 379–384.

    [6] M. A. Mansouri-Birjandi, A. Tavousi, and M. Ghadrdan, “Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators,” Photonics and Nanostructures – Fundamentals and Applications, 2016, 21: 44–51.

    [7] M. Hosseinzadeh Sani, A. Ghanbari, and H. Saghaei, “An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure,” Optical and Quantum Electronics, 2020, 52(6): 295.

    [8] S. Naghizade and H. Saghaei, “Tunable graphene-on-insulator band-stop filter at the mid-infrared region,” Optical and Quantum Electronics, 2020, 52(4): 224.

    [9] M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE Journal on Selected Topics in Quantum Electronics, 2014, 20(5): 582–589.

    [10] H. Saghaei, “Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation,” Applied Optics, 2018, 57(20): 5591–5598.

    [11] H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Applied Optics, 2015, 54(8): 2072–2079.

    [12] H. Saghaei and A. Ghanbari, “White light generation using photonic crystal fiber with sub-micron circular lattice,” Journal of Electrical Engineering, 2017, 68(4): 282–289.

    [13] A. Kowsari and H. Saghaei, “Resonantly enhanced all-optical switching in microfibre Mach-Zehnder interferometers,” Electronics Letters, 2018, 54(4): 229–231.

    [14] M. Aliee, M. H. Mozaffari, and H. Saghaei, “Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation,” Photonics and Nanostructures – Fundamentals and Applications, 2020, 40: 100797.

    [15] S. Naghizade and H. Saghaei, “A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber,” Optik, 2020, 222: 165419.

    [16] A. Ghanbari, A. Kashaninia, A. Sadr, and H. Saghaei, “Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber,” Optik, 2017, 140: 545–554.

    [17] R. Raei, M. Ebnali-Heidari, and H. Saghaei, “Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions,” Journal of the Optical Society of America B, 2018, 35(2): 323–330.

    [18] M. Kalantari, A. Karimkhani, and H. Saghaei, “Ultra-wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique,” Optik, 2018, 158(24): 142–151.

    [19] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “An optical demultiplexer based on photonic crystal ring resonators,” Optik, 2016, 127(20): 8706–8709.

    [20] S. Naghizade and S. M. Sattari-Esfahlan, “High-performance ultra-compact communication triplexer on silicon-on-insulator photonic crystal structure,” Photonic Network Communications, 2017, 34(3): 445–450.

    [21] F. Mehdizadeh and M. Soroosh, “A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities,” Photonic Network Communications, 2016, 31(1): 65–70.

    [22] S. Naghizade and S. M. Sattari-Esfahlan, “An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications,” Journal of Optical Communications, 2018, 41(1): 37–43.

    [23] M. R. Rakhshani and M. A. Mansouri-Birjandi, “Design and simulation of four-channel wavelength demultiplexer based on photonic crystal circular ring resonators for optical communications,” Journal of Optical Communications, 2014, 35(1): 9–15.

    [24] S. Asgari and N. Granpayeh, “Tunable plasmonic dual wavelength multi/demultiplexer based on graphene sheets and cylindrical resonator,” Optics Communications, 2017, 393: 5–10.

    [25] G. Manzacca, D. Paciotti, A. Marchese, M. S. Moreolo, and G. Cincotti, “2D photonic crystal cavity-based WDM multiplexer,” Photonics and Nanostructures-Fundamentals and Applications, 2007, 5(4): 164–170.

    [26] H. Saghaei, “Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach,” Radioengineering, 2017, 26(1): 16–22.

    [27] T. A. Moniem, “All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators,” Journal of Modern Optics, 2016, 63(8): 735–741.

    [28] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “Proposal for 4-to-2 optical encoder based on photonic crystals,” IET Optoelectronics, 2017, 11(1): 29–35.

    [29] S. Salimzadeh and H. Alipour-Banaei, “A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators,” Journal of Modern Optics, 2018, 65(17): 2017–2024.

    [30] H. Alipour-Banaei, F. Mehdizadeh, S. Serajmohammadi, and M. Hassangholizadeh-Kashtiban, “A 2*4 all optical decoder switch based on photonic crystal ring resonators,” Journal of Modern Optics, 2015, 62(6): 430–434.

    [31] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “A novel proposal for optical decoder switch based on photonic crystal ring resonators,” Optical and Quantum Electronics, 2016, 48(1): 1–9.

    [32] D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41(6): 1111–1114.

    [33] H. Saghaei, A. Zahedi, R. Karimzadeh, and F. Parandin, “Line defects on As2Se3-chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates,” Superlattices and Microstructures, 2017, 110: 133–138.

    [34] H. Saghaei and V. Van, “Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide,” Journal of the Optical Society of America B, 2019, 36(2): A193–A202.

    [35] H. Saghaei, P. Elyasi, and R. Karimzadeh, “Design, fabrication, and characterization of Mach-Zehnder interferometers,” Photonics and Nanostructures – Fundamentals and Applications, 2019, 37: 100733.

    [36] M. Diouf, A. Ben Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Applied Optics, 2017, 56(2): 163–169.

    [37] A. Salmanpour, S. Mohammadnejad, and P. T. Omran, “All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators,” Optical and Quantum Electronics, 2015, 47(12): 3689–3703.

    [38] M. M. Karkhanehchi, F. Parandin, and A. Zahedi, “Design of an all optical half-adder based on 2D photonic crystals,” Photonic Network Communications, 2017, 33(2): 159–165.

    [39] A. M. Vali-Nasab, A. Mir, and R. Talebzadeh, “Design and simulation of an all optical full-adder based on photonic crystals,” Optical and Quantum Electronics, 2019, 51(5): 161.

    [40] M. H. Sani, A. A. Tabrizi, H. Saghaei, and R. Karimzadeh, “An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure,” Optical and Quantum Electronics, 2020, 52(2): 107.

    [41] S. Naghizade and H. Saghaei, “A novel design of all-optical half adder using a linear defect in a square lattice rod-based photonic crystal microstructure,” arXiv preprint arXiv:2002.04535, 2020.

    [42] F. Parandin, M. M. Karkhanehchi, M. Naseri, and A. Zahedi, “Design of a high bitrate optical decoder based on photonic crystals,” Journal of Computational Electronics, 2018, 17(2): 830–836.

    [43] A. Tavousi, M. A. Mansouri-Birjandi, and M. Saffari, “Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators,” Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83: 101–106.

    [44] K. Fasihi, “All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals,” Optik, 2014, 125(21): 6520–6523.

    [45] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, “All optical 2-bit analog to digital converter using photonic crystal based cavities,” Optical and Quantum Electronics, 2017, 49(1): 38.

    [46] B. Youssefi, M. K. Moravvej-Farshi, and N. Granpayeh, “Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals,” Optics Communications, 2012, 285(13–14): 3228–3233.

    [47] M. H. Sani, S. Khosroabadi, and M. Nasserian, “High performance of an all-optical two-bit analog-to-digital converter based on Kerr effect nonlinear nanocavities,” Applied Optics, 2020, 59(4): 1049–1057.

    [48] M. H. Sani, S. Khosroabadi, and A. Shokouhmand, “A novel design for 2-bit optical analog to digital (A/D) converter based on nonlinear ring resonators in the photonic crystal structure,” Optics Communications, 2020, 458: 124760.

    [49] A. Tavousi and M. A. Mansouri-Birjandi, “Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators,” Superlattices and Microstructures, 2018, 114: 23–31.

    [50] R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Progress in Quantum Electronics, 2010, 34(3): 89–134.

    [51] J. Jágerská, H. Zhang, Z. Diao, N. Le Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Optics Letters, 2010, 35(15): 2523–2525.

    [52] F. Tavakoli, F. B. Zarrabi, and H. Saghaei, “Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region,” Applied Optics, 2019, 58(20): 5404–5414.

    [53] Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Optics Express, 2012, 20(18): 19912–19920.

    [54] M. H. Sani and S. Khosroabadi, “A novel design and analysis of high-sensitivity biosensor based on nano-cavity for detection of blood component, diabetes, cancer and glucose concentration,” IEEE Sensors Journal, 2020, 20(13): 7161–7168.

    [55] A. A. Tabrizi and A. Pahlavan, “Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer,” Optics Communications, 2020, 454: 124437.

    [56] H. Saghaei, V. Heidari, M. Ebnali-Heidari, and M. R. Yazdani, “A systematic study of linear and nonlinear properties of photonic crystal fibers,” Optik, 2016, 127(24): 11938–11947.

    [57] H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 279–286.

    [58] A. Sheikhaleh, K. Abedi, and K. Jafari, “A proposal for an optical MEMS accelerometer relied on wavelength modulation with one dimensional photonic crystal,” Journal of Lightwave Technology, 2016, 34(22): 5244–5249.

    [59] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics, 2012, 6(11): 768–772.

    [60] T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microwave and Optical Technology Letters, 2010, 52(11): 2531–2535.

    [61] D. K. Shaeffer, “MEMS inertial sensors: a tutorial overview,” IEEE Communications Magazine, 2013, 51(4): 100–109.

    [62] Y. Li, M. Efatmaneshnik, and A. G. Dempster, “Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications,” GPS Solutions, 2012, 16(1): 41–52.

    [63] J. Cheng, J. Dong, R. Landry Jr, and D. Chen, “A novel optimal configuration form redundant MEMS inertial sensors based on the orthogonal rotation method,” Sensors, 2014, 14(8): 13661–13678.

    [64] K. Huang, L. Cao, P. Zhai, P. Liu, L. Cheng, and J. Liu, “High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure,” Optics Communications, 2020, 470: 125392.

    [65] K. Huang, M. Yu, L. Cheng, J. Liu, and L. Cao, “A proposal for an optical MEMS accelerometer with high sensitivity based on wavelength modulation system,” Journal of Lightwave Technology, 2019, 37(21): 5474–5478.

    [66] H. Sun, D. Fang, K. Jia, F. Maarouf, H. Qu, and H. Xie, “A low-power low-noise dual-chopper amplifier for capacitive CMOS-MEMS accelerometers,” IEEE Sensors Journal, 2010, 11(4): 925–933.

    [67] R. Xu, S. Zhou, and W. J. Li, “MEMS accelerometer based nonspecific-user hand gesture recognition,” IEEE Sensors Journal, 2012, 12(5): 1166–1173.

    [68] A. Albarbar, A. Badri, J. K. Sinha, and A. Starr, “Performance evaluation of MEMS accelerometers,” Measurement: Journal of the International Measurement Confederation, 2009, 42(5): 790–795.

    [69] W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, et al., “Applications of SOI-based optical MEMS,” IEEE Journal on Selected Topics in Quantum Electronics, 2002, 8(1): 148–154.

    [70] E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE Journal on Selected Topics in Quantum Electronics, 2002, 8(1): 155–162.

    [71] M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” Journal of Lightwave Technology, 2006, 24(12): 4433–4454.

    [72] S. Kavitha, R. Joseph Daniel, and K. Sumangala, “Design and analysis of MEMS comb drive capacitive accelerometer for SHM and seismic applications,” Measurement: Journal of the International Measurement Confederation, 2016, 93: 327–339.

    [73] C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” Journal of Micromechanics and Microengineering, 2003, 13(5): 634–645.

    [74] A. Walther, M. Savoye, G. Jourdan, P. Renaux, F. Souchon, P. Robert, et al., “3-axis gyroscope with Si nanogage piezo-resistive detection,” in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, Jan. 29–Feb. 2, 2012, pp. 480–483.

    [75] J. C. Yu and C. B. Lan, “System modeling of microaccelerometer using piezoelectric thin films,” Sensors and Actuators, A: Physical, 2001, 88(2): 178–186.

    [76] A. Sheikhaleh, K. Abedi, and K. Jafari, “An optical MEMS accelerometer based on a two-dimensional photonic crystal add-drop filter,” Journal of Lightwave Technology, 2017, 35(14): 3029–3034.

    [77] K. Zandi, B. Wong, J. Zou, R. V Kruzelecky, W. Jamroz, and Y. A. Peter, “In-plane silicon-oninsulator optical MEMS accelerometer using waveguide fabry-perot microcavity with silicon/air bragg mirrors,” in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, Jan. 24–28, 2010, pp. 839–842.

    [78] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” Journal of Microelectromechanical Systems, 2002, 11(3): 188–195.

    [79] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-/spl mu/g//spl radic/Hz monolithic CMOS MEMS accelerometer,” IEEE Journal of Solid-State Circuits, 2004, 39(5): 722–730.

    [80] E. Soltanian, K. Jafari, and K. Abedi, “A novel differential optical MEMS accelerometer based on intensity modulation, using an optical power splitter,” IEEE Sensors Journal, 2019, 19(24): 12024–12030.

    [81] M. Ahmadian and K. Jafari, “A graphene-based wide-band MEMS accelerometer sensor dependent on wavelength modulation,” IEEE Sensors Journal, 2019, 19(15): 6226–6232.

    [82] Y. Nie, K. Huang, J. Yang, L. Cao, L. Cheng, Q. Wang, et al., “A proposal to enhance high-frequency optical MEMS accelerometer sensitivity based on a one-dimensional photonic crystal wavelength modulation system,” IEEE Sensors Journal, 2020: 1.

    [83] S. Olyaee, H. Mohsenirad, and A. Mohebzadeh- Bahabady, Photonic crystal chemical/biochemical sensors, in Progresses in Chemical Sensor, Croatia: IntechOpen, 2016: Ch. 3.

    [84] C. Trigona, B. Ando, and S. Baglio, “Design, fabrication, and characterization of BESOIaccelerometer exploiting photonic bandgap materials,” IEEE Transactions on Instrumentation and Measurement, 2014, 63(3): 702–710.

    [85] K. Zandi, J. A. Bélanger, and Y. A. Peter, “Design and demonstration of an in-plane silicon-on-insulator optical MEMS Fabry-Pérot-based accelerometer integrated with channel waveguides,” Journal of Microelectromechanical Systems, 2012, 21(6): 1464–1470.

    Mojtaba HOSSEINZADEH SANI, Hamed SAGHAEI, Mohammad Amin MEHRANPOUR, Afsaneh ASGARIYAN TABRIZI. A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers[J]. Photonic Sensors, 2021, 11(4): 457
    Download Citation