• Journal of Inorganic Materials
  • Vol. 35, Issue 9, 959 (2020)
Liuxin YANG1、2, Wenhua LUO2, Changan WANG1, and Chen XU2、*
Author Affiliations
  • 1School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • 2Institute of Materials, China Academy of Engineering Physics, Jiangyou 621700, China
  • show less
    DOI: 10.15541/jim20190548 Cite this Article
    Liuxin YANG, Wenhua LUO, Changan WANG, Chen XU. Novel Inorganic Two-dimensional Materials for Gas Separation Membranes[J]. Journal of Inorganic Materials, 2020, 35(9): 959 Copy Citation Text show less
    References

    [1] G LIU, W JIN, N XU. Graphene-based membranes. Chemical Society Reviews, 44, 5016-5030(2015).

    [2] S SHOLL D, P LIVELY R. Seven chemical separations to change the world. Nature, 532, 435-437(2016).

    [3] P LI, Z WANG, Z QIAO. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 495, 130-168(2015).

    [4] W JEON Y, H LEE D. Gas membranes for CO2/CH4 (biogas) separation: a review. Environmental Engineering Science, 32, 71-85(2015).

    [5] K DALANE, Z DAI, G MOGSETH. Potential applications of membrane separation for subsea natural gas processing: a review. Journal of Natural Gas Science and Engineering, 39, 101-117(2017).

    [6] F HIMMA N, K WARDANI A, N PRASETYA. Recent progress and challenges in membrane-based O2/N2 separation. Reviews in Chemical Engineering, 35, 591-625(2019).

    [7] J ZHU, J HOU, A ULIANA. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. Journal of Materials Chemistry A, 6, 3773-3792(2018).

    [8] L GIN D, D NOBLE R. Designing the next generation of chemical separation membranes. Science, 332, 674(2011).

    [9] T QIU, C KUANG, X ZHENG. On the research and application trends of global gas membrane separation technology-based on analysis of SCI articles and patents in recent 20 years. Chemical Industry & Engineering Progress, 35, 2299-2308(2016).

    [10] Y YAMPOLSKII. Polymeric gas separation membranes. Macromolecules, 45, 3298-3311(2012).

    [11] L PROZOROVSKA, R KIDAMBI P. State-of-the-art and future prospects for atomically thin membranes from 2D materials. Advanced Materials, 30, 1801179(2018).

    [12] M LIU, A GURR P, Q FU. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 6, 23169-23196(2018).

    [13] G LIU, W JIN, N XU. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angewandte Chemie International Edition, 55, 13384-13397(2016).

    [14] L WANG, S H BOUTILIER M, R KIDAMBI P et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 12, 509(2017).

    [15] G WIJMANS J. BAKER R W J. The solution-diffusion model: a review. Journal of Membrane Science, 107, 1-21(1995).

    [16] C LI, M MECKLER S, P SMITH Z. Engineered transport in microporous materials and membranes for clean energy technologies. Advanced Materials, 30, 1704953(2018).

    [17] J SHEN, G LIU, K HUANG. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 127, 588-592(2015).

    [18] W DRAHUSHUK L, L WANG, P KOENIG S. Analysis of time-varying, stochastic gas transport through graphene membranes. ACS Nano, 10, 786-795(2016).

    [19] W KIM H, W YOON H, M YOON S. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 342, 91-95(2013).

    [20] H LI, Z SONG, X ZHANG. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 342, 95-98(2013).

    [21] Z WANG, D WANG, S ZHANG. Interfacial design of mixed matrix membranes for improved gas separation performance. Advanced Materials, 28, 3399-3405(2016).

    [22] X ZHU, C TIAN, L DO-THANH C et al. Two‐dimensional materials as prospective scaffolds for mixed‐matrix membrane‐based CO2 separation. ChemSusChem, 10, 3304-3316(2017).

    [23] K GEIM A, S NOVOSELOV K. The rise of graphene. Nature Materials, 6, 183(2007).

    [24] B PARTOENS, F PEETERS. From graphene to graphite: electronic structure around the K point. Phys. Rev. B, 74, 075404(2006).

    [25] S BUNCH J, S VERBRIDGE S, S ALDEN J. Impermeable atomic membranes from graphene sheets. Nano Letters, 8, 2458-2462(2008).

    [26] V BERRY. Impermeability of graphene and its applications. Carbon, 62, 1-10(2013).

    [27] C LEE, X WEI, W KYSAR J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388(2008).

    [28] E JIANG D, V COOPER, S DAI. Porous graphene as the ultimate membrane for gas separation. Nano Letters, 9, 4019-4024(2009).

    [29] S WANG, S DAI, E JIANG D. Continuously tunable pore size for gas separation via a bilayer nanoporous graphene membrane. ACS Applied Nano Materials, 2, 379-384(2019).

    [30] P KOENIG S, L WANG, J PELLEGRINO. Selective molecular sieving through porous graphene. Nature Nanotechnology, 7, 728-732(2012).

    [31] D BELL, M LEMME, L STERN. Precision cutting and patterning of graphene with helium ions. Nanotechnology, 20, 455301(2009).

    [32] K CELEBI, J BUCHHEIM, M WYSS R. Ultimate permeation across atomically thin porous graphene. Science, 344, 289-292(2014).

    [33] S HUANG, M DAKHCHOUNE, W LUO. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nature Communications, 9, 2632-2632(2018).

    [34] D FISCHBEIN M, M DRNDIĆ. Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 93, 113107(2008).

    [35] N LU, J WANG, C FLORESCA H et al. In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400-1200 ℃. Carbon, 50, 2961-2965(2012).

    [36] S GARAJ, W HUBBARD, A REINA. Graphene as a subnanometre trans-electrode membrane. Nature, 467, 190(2010).

    [37] C MERCHANT. DNA translocation through graphene nanopores. Biophysical Journal, 100, 521a(2011).

    [38] S HUMMERS JR W, E OFFEMAN R. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339(1958).

    [39] A DIMIEV, J TOUR. Mechanism of graphene oxide formation. ACS Nano, 8, 3060-3067(2014).

    [40] R NAIR R, A WU H, N JAYARAM P. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 335, 442-444(2012).

    [41] A IBRAHIM, S LIN Y. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. Journal of Membrane Science, 550, 238-245(2018).

    [42] J YANG, D GONG, G LI. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Advanced Materials, 30, 1705775(2018).

    [43] J ABRAHAM, S VASU K, D WILLIAMS C. Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12, 546-550(2017).

    [44] C CHI, X WANG, Y PENG. Facile preparation of graphene oxide membranes for gas separation. Chemistry of Materials, 28, 2921-2927(2016).

    [45] E YANG, H HAM M, B PARK H. Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. Journal of Membrane Science, 547, 73-79(2018).

    [46] Y SU, G KRAVETS V, L WONG S. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nature Communications, 5, 4843(2014).

    [47] P SUN, K WANG, H ZHU. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Advanced Materials, 28, 2287-2310(2016).

    [48] Y ZHANG, S ZHANG, S CHUNG T. via nanofiltration. Environmental Science & Technology, 49, 10235-10242(2015).

    [49] W BURRESS J, S GADIPELLI, J FORD. Graphene oxide framework materials: theoretical predictions and experimental results. Angewandte Chemie International Edition, 49, 8902-8904(2010).

    [50] M KARUNAKARAN, F VILLALOBOS L, M KUMAR. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture. Journal of Materials Chemistry A, 5, 649-656(2017).

    [51] S WANG, Y XIE, G HE. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angewandte Chemie, 129, 14434-14439(2017).

    [52] G HUANG, P ISFAHANI A, A MUCHTAR. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. Journal of Membrane Science, 565, 370-379(2018).

    [53] Q XIN, F MA, L ZHANG. Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation. Journal of Membrane Science, 586, 23-33(2019).

    [54] J SHEN, G LIU, K HUANG. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 10, 3398-3409(2016).

    [55] W YING, J CAI, K ZHOU. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane. ACS Nano, 12, 5385-5393(2018).

    [56] H SCHMIDT, S WANG, L CHU. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Letters, 14, 1909-1913(2014).

    [57] V NICOLOSI, M CHHOWALLA, M G KANATZIDIS. Liquid exfoliation of layered materials. Science, 340, 1226419(2013).

    [58] W ZHANG, K HUANG J, H CHEN C. High-gain phototransistors based on a CVD MoS2 monolayer. Advanced Materials, 25, 3456-3461(2013).

    [59] H WANG, H FENG, J LI. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small, 10, 2165-2181(2014).

    [60] Z ZENG, T SUN, J ZHU. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angewandte Chemie International Edition, 124, 9186-9190(2012).

    [61] A GEE M, F FRINDT R, P JOENSEN. Inclusion compounds of MoS2. Materials Research Bulletin, 21, 543-549(1986).

    [62] D WANG, Z WANG, L WANG. Ultrathin membranes of single- layered MoS2 nanosheets for high-permeance hydrogen separation. Nanoscale, 7, 17649-17652(2015).

    [63] A ACHARI, S SAHANA, M ESWARAMOORTHY. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy & Environmental Science, 9, 1224-1228(2016).

    [64] M OSTWAL, B SHINDE D, X WANG. Graphene oxide- molybdenum disulfide hybrid membranes for hydrogen separation. Journal of Membrane Science, 550, 145-154(2018).

    [65] S ZHAO, J XUE, W KANG. Gas adsorption on MoS2 monolayer from first-principles calculations. Chemical Physics Letters, 35-42(2014).

    [66] Q HE, Z ZENG, Z YIN. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small, 8, 2994-2999(2012).

    [67] J BEREAN K, Z OU J, T DAENEKE. 2D MoS2 pdms nanocomposites for NO2 separation. Small, 11, 5035-5040(2015).

    [68] Y SHEN, H WANG, X ZHANG. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 8, 23371-23378(2016).

    [69] K CHEN D, W YING, Y GUO. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane. ACS Applied Materials & Interfaces, 9, 44251-44257(2017).

    [70] D CHEN, W WANG, W YING. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid. Journal of Materials Chemistry A, 6, 16566-16573(2018).

    [71] M ALHABEB, K MALESKI, B ANASORI. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633-7644(2017).

    [72] T WANG J, P CHEN P, B SHI B. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angewandte Chemie-International Edition, 57, 6814-6818(2018).

    [73] L DING, Y WEI, Y WANG. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 56, 1825-1829(2017).

    [74] E REN C, B HATZELL K, M ALHABEB. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. The Journal of Physical Chemistry Letters, 6, 4026-4031(2015).

    [75] K RASOOL, A MAHMOUD K, J JOHNSON D. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep, 7, 1598(2017).

    [76] K RASOOL, M HELAL, A ALI. Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10, 3674-3684(2016).

    [77] L DING, Y WEI, L LI. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 9, 155(2018).

    [78] J SHEN, Z LIU G, F JI Y. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 28, 1801511(2018).

    [79] L LI, T ZHANG, Y DUAN. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry A, 6, 11734-11742(2018).

    [80] Q WANG, D O’HARE. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 112, 4124-4155(2012).

    [81] P LU, Y LIU, T ZHOU. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 567, 89-103(2018).

    [82] W KIM T, M SAHIMI, T TSOTSIS T. Preparation of hydrotalcite thin films using an electrophoretic technique. Industrial & Engineering Chemistry Research, 47, 9127-9132(2008).

    [83] W KIM T, M SAHIMI, T TSOTSIS T. The preparation and characterization of hydrotalcite thin films. Industrial & Engineering Chemistry Research, 48, 5794-5801(2009).

    [84] Y LIU, N WANG, Z CAO. Molecular sieving through interlayer galleries. Journal of Materials Chemistry A, 2, 1235-1238(2014).

    [85] Y WANG, X LOW Z, S KIM. Functionalized boron nitride nanosheets: a thermally rearranged polymer nanocomposite membrane for hydrogen separation. Angewandte Chemie International Edition, 57, 16056-16061(2018).

    [86] S KIM, J HOU, Y WANG. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 6, 7668-7674(2018).

    [87] X ZHANG, Y HE, R LI. 2D mica crystal as electret in organic field-effect transistors for multistate memory. Advanced Materials, 28, 3755-3760(2016).

    [88] D WANG, G YUAN, G HAO. All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy, 43, 351-358(2018).

    [89] W YING, B HAN, H LIN. Laminated mica nanosheets supported ionic liquid membrane for CO2 separation. Nanotechnology, 30, 385705(2019).

    [90] P ZHANG H, W HU, A DU. Doped phosphorene for hydrogen capture: a DFT study. Applied Surface Science, 433, 249-255(2018).

    [91] P ZHANG H, A DU, B SHI Q. Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. Journal of CO2 Utilization, 24, 463-470(2018).

    Liuxin YANG, Wenhua LUO, Changan WANG, Chen XU. Novel Inorganic Two-dimensional Materials for Gas Separation Membranes[J]. Journal of Inorganic Materials, 2020, 35(9): 959
    Download Citation