• Infrared and Laser Engineering
  • Vol. 49, Issue 7, 20190452 (2020)
Chaojun Niu, Xiaobin Wang, Fang Lu, and Xiang’e Han
Author Affiliations
  • 西安电子科技大学 物理与光电工程学院, 陕西 西安 710071
  • show less
    DOI: 10.3788/IRLA20190452 Cite this Article
    Chaojun Niu, Xiaobin Wang, Fang Lu, Xiang’e Han. Validity of beam propagation characteristics through oceanic turbulence simulated by phase screen method[J]. Infrared and Laser Engineering, 2020, 49(7): 20190452 Copy Citation Text show less

    Abstract

    Oceanic turbulence is an important factor to restrict the application of underwater optical communication. Phase screen method is a simple and effective way to simulate the propagation process of complex beams through turbulence. The constraints of parameter setting for phase screen simulated oceanic turbulence based on the sampling principle and turbulence effects were firstly discussed here. Furthermore, the theoretical expressions of propagation characteristics of Gaussian beam through oceanic turbulence from weak to strong fluctuation regime were derived. Our goal in this research was to testify the validity of phase screen method in oceanic turbulence by comparison of major statistical characteristics of Gaussian beam propagating in oceanic turbulence simulated by phase screen method and the theoretical expressions derived. Results show good match between simulation results and theory formulas for long exposure beam radius and centroid displacement under different turbulence conditions, as well as the scintillation index under weak fluctuation regime. However, results show significant mismatch between numerically estimated and theoretically predicted values for the on-axis scintillation index in strong fluctuation regime.
    $\begin{array}{l} {\varPhi _n}(\kappa ) = 0.388 \times {10^{ - 8}}{\varepsilon ^{ - 1/3}}{\kappa ^{ - 11/3}}[1 + 2.35{(\kappa \eta )^{2/3}}] \times \\ \dfrac{{{\chi _T}}}{{{\omega ^2}}}[{\omega ^2}\exp( - {A_T}{\delta _{TS}}) + \exp ( - {A_S}{\delta _{TS}}) - 2\omega \exp ( - {A_{TS}}{\delta _{TS}})] \\ \end{array} $(1)

    View in Article

    ${W_{{{LE}}}} = W\sqrt {1 + T} $(2)

    View in Article

    $\begin{split} T &= 4{\pi ^2}{k^2}L\int_0^1 {d\xi } \int_0^\infty {d\kappa \kappa {\varPhi _n}\left( \kappa \right)}\times \\ &\left[ {1 - \exp \left( { - \dfrac{{\varLambda L{\kappa ^2}{\xi ^2}}}{k}} \right)} \right] \\ \end{split} $(3)

    View in Article

    $\begin{split} \left\langle {r_c^{\rm{2}}} \right\rangle & = 4{\pi ^2}{k^2}L\int_0^1 {d\xi } \int_0^\infty {d\kappa \kappa {\varPhi _n}\left( \kappa \right)} \\ &{H_{LS}}\left[ {1 - \exp \left( { - \dfrac{{\varLambda L{\kappa ^2}{\xi ^2}}}{k}} \right)} \right] \end{split} $(4)

    View in Article

    ${H_{LS}} = \exp \left\{ { - {\kappa ^2}W_0^2\left[ {{{\left( {{\Theta _0} + {\Theta _0}\xi } \right)}^2} + \varLambda _0^2{{\left( {1 - \xi } \right)}^2}} \right]} \right\}$(5)

    View in Article

    $\begin{split} \sigma _I^2\left( {0,L} \right)& = 8{\pi ^2}{k^2}L\int_0^1 {d\xi } \int_0^\infty {d\kappa \kappa {\varPhi _n}\left( \kappa \right)} \exp \left( { - \dfrac{{\varLambda L{\kappa ^2}{\xi ^2}}}{k}} \right) \times \\ & \left\{ {1 - \cos \left[ {\frac{{L{\kappa ^2}}}{k}\xi \left( {1 - \left( {1 - \Theta } \right)\xi } \right)} \right]} \right\} \end{split} $(6)

    View in Article

    ${\varLambda _0} = \dfrac{{2L}}{{kw_0^2}},{\Theta _0} = 1 - \dfrac{L}{{{F_0}}}$(7)

    View in Article

    $\varLambda = \dfrac{{{\varLambda _0}}}{{\Theta _0^2 + \varLambda _0^2}},\Theta = \dfrac{{{\Theta _0}}}{{\Theta _0^2 + \varLambda _0^2}}$(8)

    View in Article

    ${\varLambda _e} = \dfrac{\varLambda }{{1 + 4q\varLambda /3}},{\Theta _e} = \dfrac{{\Theta - 2q\varLambda /3}}{{1 + 4q\varLambda /3}}$(9)

    View in Article

    $\begin{split} u({{r}},{z_{j + 1}})& = {F^{ - 1}}\{ F\left[ {u({{r}},{z_j})\exp \left[ {{\rm{i}}\varphi (x,y)} \right]} \right]\times \\ & \exp ( - {\rm{i}}\dfrac{{\kappa _x^2 + \kappa _y^2}}{{2k}}\Delta {z_{j + 1}})\} \\ \end{split} $(10)

    View in Article

    $\begin{split} \varphi \left( {x,\;y} \right) &= C\sum\limits_{{K_x}} {\sum\limits_{{K_Y}} {a\left( {{\kappa _x}{\rm{,}}\;{\kappa _y}} \right)\sqrt {{\varPhi _\theta }\left( {{\kappa _x}{\rm{,}}\;{\kappa _y}} \right)} } }\times \\ & \exp \left[ {i\left( {{\kappa _x}x + {\kappa _y}y} \right)} \right] \end{split} $(11)

    View in Article

    ${\varPhi _\theta }({\kappa _x},{\kappa _y}) = 2\pi {k^2}\int\limits_z^{\Delta z} {{\varPhi _n}({\kappa _x},{\kappa _y},\xi )} {\rm{d}}\xi $(12)

    View in Article

    $\Delta x = \dfrac{{\lambda L}}{x}$(13)

    View in Article

    $\begin{split} &{\rho _0} = {[3.603 \times {10^{ - 7}}{k^2}\Delta z{\varepsilon ^{ - 1/3}}\dfrac{{{\chi _T}}}{{2{\omega ^2}}}(16.958{\omega ^2} - 44.175\omega + 118.923)]^{ - 1/2}}\;\;\;\;({\rho _0} < < \eta ) \\ &{\rho _0} = {[3.603 \times {10^{ - 7}}{k^2}\Delta z{\varepsilon ^{ - 1/3}}\dfrac{{{\chi _T}}}{{2{\omega ^2}}}(1.116{\omega ^2} - 2.235\omega + 1.119)]^{ - 3/5}}\;\;\;\;({\rho _0} > > \eta ) \\ \end{split} $(14)

    View in Article

    ${N_{PS}} > {\left[ {10\sigma _R^2\left( L \right)} \right]^{6/11}}$(15)

    View in Article

    $\begin{split} \sigma _R^2 &= 3.063 \times {10^{ - 7}}{k^{7/6}}{L^{11/6}}{\varepsilon ^{ - 1/3}}{\chi _T}× \\ &\left( {0.358{\omega ^2} - 0.725\omega + 0.367} \right)/{\omega ^2} \end{split} $(16)

    View in Article

    $W_{{{LE}}}^2 = {{2\int\limits_{ - \infty }^\infty {{r^2}\left\langle {I\left( {{{r}},L} \right)} \right\rangle {\rm{d}}{{r}}} } / {\int\limits_{ - \infty }^\infty {\left\langle {I\left( {{{r}},L} \right)} \right\rangle {\rm{d}}{{r}}} }}$(17)

    View in Article

    ${\sigma _c} = \sqrt {\left\langle {{{r}}_c^{\rm{2}}} \right\rangle } $(18)

    View in Article

    ${{{r}}_c} = {{2\int\limits_{ - \infty }^\infty {{{r}}I\left( {{{r}},L} \right){\rm{d}}{{r}}} } / {\int\limits_{ - \infty }^\infty {\left\langle {I\left( {{{r}},L} \right)} \right\rangle {\rm{d}}{{r}}} }}$(19)

    View in Article

    $\sigma _I^2 = {{\left\langle {{{\left[ {I(0,L) - \left\langle {I(0,L)} \right\rangle } \right]}^2}} \right\rangle }/ {{{\left\langle {I(0,L)} \right\rangle }^2}}}$(20)

    View in Article

    Chaojun Niu, Xiaobin Wang, Fang Lu, Xiang’e Han. Validity of beam propagation characteristics through oceanic turbulence simulated by phase screen method[J]. Infrared and Laser Engineering, 2020, 49(7): 20190452
    Download Citation