• Opto-Electronic Advances
  • Vol. 6, Issue 6, 220113 (2023)
Xiaojun Xu1,*, Rui Wang, and Zining Yang2,**
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.29026/oea.2023.220113 Cite this Article
    Xiaojun Xu, Rui Wang, Zining Yang. The second fusion of laser and aerospace—an inspiration for high energy lasers[J]. Opto-Electronic Advances, 2023, 6(6): 220113 Copy Citation Text show less
    References

    [1] JP Gordon, HJ Zeiger, CH Townes. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys Rev, 95, 282-284(1954).

    [2] N Taylor. Laser: The Inventor, the Nobel Laureate, and the 30-year Patent War(2000).

    [3] AL Schawlow, CH Townes. Infrared and optical masers. Phys Rev, 112, 1940-1949(1958).

    [4] TH Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [5] PV Zarubin. Academician Basov, high-power lasers and the antimissile defence problem. Quantum Electron, 32, 1048-1064(2002).

    [6] J Hecht. A short history of laser development. Appl Opt, 49, F99-F122(2010).

    [7] D Carroll. Overview of high energy lasers: past, present, and future?. In 42nd AIAA Plasmadynamics and Lasers Conference(2011). https://doi.org/10.2514/6.2011-3102

    [8] JR Cook. High-energy laser weapons since the early 1960s. Opt Eng, 52, 021007(2012).

    [9] J Hecht. Lasers, Death Rays, and the Long, Strange Quest for the Ultimate Weapon(2019).

    [10] E Snitzer. Optical maser action of Nd+3 in a barium crown glass. Phys Rev Lett, 7, 444-446(1961).

    [11] J Geusic, HM Marcos, Uitert LG Van. Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett, 4, 182-184(1964).

    [12] CKN Patel. Continuous-wave laser action on vibrational-rotational transitions of CO2. Phys Rev, 136, A1187-A1193(1964).

    [13] NG Basov, AN Oraevskii, VA Shcheglov. Production of a population inversion in molecules of a working gas mixed with a thermally excited auxiliary gas. Sov Phys Tech Phys, 15, 126(1970).

    [14] ET Gerry. Gasdynamic lasers. IEEE Spectr, 7, 51-58(1970).

    [15] AE Siegman. Unstable optical resonators. Appl Opt, 13, 353-367(1974).

    [16] DJ Spencer, TA Jacobs, H Mirels, RWF Gross. Continuous‐wave chemical laser. Int J Chem Kinet, 1, 493-494(1969).

    [17] DJ Spencer, H Mirels, TA Jacobs. Initial performance of a CW chemical laser. Opto-electronics, 2, 155-160(1970).

    [18] RA Meinzer. A continuous‐wave combustion laser. Int J Chem Kinet, 2, 335(1970).

    [21] RJ Keyes, TM Quist. Recombination radiation emitted by gallium arsenide. Proc IRE, 50, 1822-1823(1962).

    [22] DF Welch. A brief history of high-power semiconductor lasers. IEEE J Sel Top Quantum Electron, 6, 1470-1477(2000).

    [23] M Sakamoto, JG Endriz, DR Scifres. 120 W CW output power from monolithic AlGaAs (800 nm) laser diode array mounted on diamond heatsink. Electron Lett, 28, 197-199(1992).

    [24] P Lacovara, HK Choi, CA Wang, RL Aggarwal, TY Fan. Room-temperature diode-pumped Yb: YAG laser. Opt Lett, 16, 1089-1091(1991).

    [25] SJ McNaught, CP Asman, H Injeyan, A Jankevics, AMF Johnson et al. 100-kW coherently combined Nd: YAG MOPA laser array. In Proceedings of the Frontiers in Optics 2009 FThD2(2009). https://doi.org/10.1364/FIO.2009.FThD2

    [26] MA Wilmington. Textron defense systems awarded funding for the DARPA HELLADS program. https://investor.textron.com/news/news-releases/press-release-details/2008/Textron-Defense-Systems-Awarded-Funding-for-the-DARPA-HELLADS-Program/default.aspx

    [27] E Snitzer, H Po, F Hakimi, R Tumminelli, B McCollum. Double clad, offset core Nd fiber laser. In Optical Fiber Sensors PD5(1988). https://doi.org/10.1364/OFS.1988.PD5

    [28] M O’Connor, V Gapontsev, V Fomin, M Abramov, A Ferin. Power scaling of SM fiber lasers toward 10kW. In Conference on Lasers and Electro-Optics CThA3(2009). https://doi.org/10.1364/CLEO.2009.CThA3

    [30] XJ Tang, G Wang, J Liu, L Geng, DS Jiang. Development of high brightness solid-state laser technology. Strateg Study Chin Acad Eng, 22, 49-55(2020).

    [31] WF Krupke. Diode pumped alkali laser. US Patent Application, 99272(2001).

    [32] WF Krupke, RJ Beach, VK Kanz, SA Payne. Resonance transition 795-nm rubidium laser. Opt Lett, 28, 2336-2338(2003).

    [33] WF Krupke, RJ Beach, VK Kanz, SA Payne, JT Early. New class of cw high-power diode-pumped alkali lasers (DPALs)(plenary paper). Proc SPIE, 5448, 7-17(2004).

    [34] W Krupke. Diode-pumped alkali lasers aim for single-aperture power scaling. SPIE Newsroom(2008). https://spie.org/news/1356-diode-pumped-alkali-lasers-aim-for-single-aperture-power-scaling?SSO=1

    [35] PJ Wisoff. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option for ballistic missile defense high-level summary-April 2017. Report No. Lawrence Livermore National Lab(2017). https://doi.org/10.2172/1357366

    [36] ZJ Liu, HY Wang, XJ Xu. High energy diode pumped gas laser. Chin J Lasers, 48, 0401001(2021).

    [37] JD Han, MC Heaven. Gain and lasing of optically pumped metastable rare gas atoms. Opt Lett, 37, 2157-2159(2012).

    [38] EY Choueiri. A critical history of electric propulsion: the first 50 years (1906–1956). J Propuls Power, 20, 193-203(2004).

    [39] A Bapat, PB Salunkhe, AV Patil. Hall-effect thrusters for deep-space missions: a review. IEEE Trans Plasma Sci, 50, 189-202(2022).

    [40] J Brophy. Advanced ion propulsion systems for affordable deep-space missions. Acta Astronaut, 52, 309-316(2003).

    [41] WT Rawlins, KL Galbally-Kinney, SJ Davis, AR Hoskinson, JA Hopwood et al. Optically pumped microplasma rare gas laser. Opt Express, 23, 4804-4813(2015).

    [42] J Han, MC Heaven, PJ Moran, GA Pitz, EM Guild et al. Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W. Opt Lett, 42, 4627-4630(2017).

    [43] Z Zhang, P Lei, Z Song, P Sun, D Zuo et al. Optically pumped argon metastable laser with repetitively pulsed discharge in a closed chamber. J Appl Phys, 129, 143103(2021).

    [44] R Wang, ZN Yang, K Li, HY Wang, XJ Xu. Experiment and modeling of the pulsed lasing in a diode-pumped argon metastable laser. J Appl Phys, 131, 023104(2022).

    [45] PA Mikheyev, JD Han, MC Heaven. Lasing in optically pumped Ar: He mixture excited in a dielectric barrier discharge. Proc SPIE, 11042, 1104206(2019).

    [46] P Lei, ZF Zhang, XB Wang, DL Zuo. Demonstration of transversely pumped Ar* laser with continuous-wave diode stack and repetitively pulsed discharge. Opt Commun, 513, 128116(2022).

    [47] B Eshel, GP Perram. Five-level argon–helium discharge model for characterization of a diode-pumped rare-gas laser. J Opt Soc Am B, 35, 164-173(2018).

    [48] PJ Moran, NP Lockwood, MA Lange, DA Hostutler, EM Guild et al. Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL). Proc SPIE, 9729, 97290C(2016).

    [49] H Kim, J Hopwood. Scalable microplasma array for argon metastable lasing medium. J Appl Phys, 126, 163301(2019).

    [50] J Yang, S Yokota, R Kaneko, K Komurasaki. Diagnosing on plasma plume from xenon Hall thruster with collisional-radiative model. Phys Plasmas, 17, 103504(2010).

    [51] C Berenguer, K Katsonis. Plasma reactors and plasma thrusters modeling by Ar complete global models. Int J Aerosp Eng, 2012, 740869(2012).

    [52] N Yamamoto, K Tomita, K Sugita, T Kurita, H Nakashima et al. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique. Rev Sci Instrum, 83, 073106(2012).

    [53] R Wang, ZN Yang, QS Liu, K Han, HY Wang et al. Demonstration of a diode-pumped plasma jet-type rare gas laser. Opt Lett, 47, 3279-3282(2022).

    Xiaojun Xu, Rui Wang, Zining Yang. The second fusion of laser and aerospace—an inspiration for high energy lasers[J]. Opto-Electronic Advances, 2023, 6(6): 220113
    Download Citation