• Photonics Research
  • Vol. 9, Issue 7, 1336 (2021)
Zhuqiang Zhong1、2, Da Chang1, Wei Jin1, Min Won Lee3, Anbang Wang4, Shan Jiang1, Jiaxiang He1, Jianming Tang1, and Yanhua Hong1、*
Author Affiliations
  • 1School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, UK
  • 2College of Science, Chongqing University of Technology, Chongqing 400054, China
  • 3Laboratoire de Physique des Lasers CNRS UMR 7538, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
  • 4College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.1364/PRJ.427458 Cite this Article Set citation alerts
    Zhuqiang Zhong, Da Chang, Wei Jin, Min Won Lee, Anbang Wang, Shan Jiang, Jiaxiang He, Jianming Tang, Yanhua Hong. Intermittent dynamical state switching in discrete-mode semiconductor lasers subject to optical feedback[J]. Photonics Research, 2021, 9(7): 1336 Copy Citation Text show less
    Experimental setup. DM Laser, discrete-mode laser; OC, optical circulator; FC, fiber coupler; EDFA, erbium-doped fiber amplifier; PC, polarization controller; VA, variable optical attenuator; PM, power meter; PD, photodetector; ESA, electrical spectrum analyzer; OSC, oscilloscope.
    Fig. 1. Experimental setup. DM Laser, discrete-mode laser; OC, optical circulator; FC, fiber coupler; EDFA, erbium-doped fiber amplifier; PC, polarization controller; VA, variable optical attenuator; PM, power meter; PD, photodetector; ESA, electrical spectrum analyzer; OSC, oscilloscope.
    Time series and power spectra of the ECF DM-SL output intensity when bias current is 40 mA, where the feedback ratio ξf is 0.045 (row 1), 0.090 (row 2), and 0.300 (row 3). The gray lines in the power spectra denote the noise floor.
    Fig. 2. Time series and power spectra of the ECF DM-SL output intensity when bias current is 40 mA, where the feedback ratio ξf is 0.045 (row 1), 0.090 (row 2), and 0.300 (row 3). The gray lines in the power spectra denote the noise floor.
    (a) Time series, (b) power spectra, and (c) phase portraits of the output of ECF DM-SL when I=40 mA, where ξf is 0.048 (row 1), 0.052 (row 2), 0.059 (row 3), and 0.063 (row 4). The insets of the first column show the detail temporal waveforms in a 3 ns time span.
    Fig. 3. (a) Time series, (b) power spectra, and (c) phase portraits of the output of ECF DM-SL when I=40  mA, where ξf is 0.048 (row 1), 0.052 (row 2), 0.059 (row 3), and 0.063 (row 4). The insets of the first column show the detail temporal waveforms in a 3 ns time span.
    Duty cycle of the periodic oscillation as a function of ξf when I=40 mA.
    Fig. 4. Duty cycle of the periodic oscillation as a function of ξf when I=40  mA.
    (a) Time series, (b) power spectra, and (c) phase portraits for the output of the DM-SL when I=70 mA, where the feedback ratio ξf is 0.158 (row 1), 0.186 (row 2), and 0.204 (row 3). The insets of the first column show the detail temporal waveforms within 3 ns time span.
    Fig. 5. (a) Time series, (b) power spectra, and (c) phase portraits for the output of the DM-SL when I=70  mA, where the feedback ratio ξf is 0.158 (row 1), 0.186 (row 2), and 0.204 (row 3). The insets of the first column show the detail temporal waveforms within 3 ns time span.
    Mapping of dynamical states of the ECF DM-SL in the parameter space of ξf and I.
    Fig. 6. Mapping of dynamical states of the ECF DM-SL in the parameter space of ξf and I.
    (a) Time series, (b) power spectra, and (c) phase portraits for the output of the DM-SL when τ=20 ns, where the J/Jth=3 and the feedback strength κ is 4.2 ns−1 (row 1) and 5.0 ns−1 (row 2). The insets of the first column show the detail temporal waveforms within a 3 ns time span.
    Fig. 7. (a) Time series, (b) power spectra, and (c) phase portraits for the output of the DM-SL when τ=20  ns, where the J/Jth=3 and the feedback strength κ is 4.2  ns1 (row 1) and 5.0  ns1 (row 2). The insets of the first column show the detail temporal waveforms within a 3 ns time span.
    Duty cycle of the periodic oscillation as functions of κ when J/Jth=3 and τext=20 ns.
    Fig. 8. Duty cycle of the periodic oscillation as functions of κ when J/Jth=3 and τext=20  ns.
    (a) Time series, (b) power spectra, and (c) phase portraits for the output of the DM-SL when τ=20 ns, where the J/Jth=6, κ=7.9 ns−1 (row 1) and κ=9.3 ns−1 (row 2). The insets of the first column show the detail temporal waveforms within a 3 ns time span.
    Fig. 9. (a) Time series, (b) power spectra, and (c) phase portraits for the output of the DM-SL when τ=20  ns, where the J/Jth=6, κ=7.9  ns1 (row 1) and κ=9.3  ns1 (row 2). The insets of the first column show the detail temporal waveforms within a 3 ns time span.
    Dynamical state maps of the ECF DM-SL in the parameter space of normalized bias current and feedback strength when τext=10 ns (left column) and τext=20 ns (right column).
    Fig. 10. Dynamical state maps of the ECF DM-SL in the parameter space of normalized bias current and feedback strength when τext=10  ns (left column) and τext=20  ns (right column).
    Zhuqiang Zhong, Da Chang, Wei Jin, Min Won Lee, Anbang Wang, Shan Jiang, Jiaxiang He, Jianming Tang, Yanhua Hong. Intermittent dynamical state switching in discrete-mode semiconductor lasers subject to optical feedback[J]. Photonics Research, 2021, 9(7): 1336
    Download Citation