• Photonics Research
  • Vol. 9, Issue 7, 1336 (2021)
Zhuqiang Zhong1、2, Da Chang1, Wei Jin1, Min Won Lee3, Anbang Wang4, Shan Jiang1, Jiaxiang He1, Jianming Tang1, and Yanhua Hong1、*
Author Affiliations
  • 1School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, UK
  • 2College of Science, Chongqing University of Technology, Chongqing 400054, China
  • 3Laboratoire de Physique des Lasers CNRS UMR 7538, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
  • 4College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.1364/PRJ.427458 Cite this Article Set citation alerts
    Zhuqiang Zhong, Da Chang, Wei Jin, Min Won Lee, Anbang Wang, Shan Jiang, Jiaxiang He, Jianming Tang, Yanhua Hong. Intermittent dynamical state switching in discrete-mode semiconductor lasers subject to optical feedback[J]. Photonics Research, 2021, 9(7): 1336 Copy Citation Text show less
    References

    [1] C. Grebogi, E. Ott, J. A. Yorke. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 238, 632-638(1987).

    [2] G. Adiletta, A. R. Guido, C. Rossi. Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn., 10, 251-269(1996).

    [3] R. Gilmore. Topological analysis of chaotic dynamical systems. Rev. Mod. Phys., 70, 1455-1529(1998).

    [4] D. Gella, I. Zuriguel, J. Ortín. Multifractal intermittency in granular flow through bottlenecks. Phys. Rev. Lett., 123, 218004(2019).

    [5] T. P. J. Krüger, C. Ilioaia, L. Valkunas, R. V. Grondelle. Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J. Phys. Chem. B, 115, 5083-5095(2011).

    [6] A. C. L. Chian, E. L. Rempel, C. Rogers. Complex economic dynamics: chaotic saddle, crisis and intermittency. Chaos Solitons Fractals, 29, 1194-1218(2006).

    [7] S. H. Gong, C. M. Kim. On–off intermittency in the threshold of a continuous-wave Nd:YAG laser. J. Opt. Soc. Am. B, 18, 1285-1287(2001).

    [8] G. S. Yim, Y. J. Park, C. M. Kim, Y. S. Kim. Transition from laser-off to laser-on through on–off intermittency in a gain-modulated CO2 laser. J. Opt. Soc. Am. B, 21, 2112-2116(2004).

    [9] J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi. Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys. Rev. Lett., 104, 157403(2010).

    [10] S. Osborne, A. Amann, D. Bitauld, S. O’Brien. On-off intermittency in an optically injected semiconductor laser. Phys. Rev. E, 85, 056204(2012).

    [11] J. P. Toomey, D. M. Kane, M. W. Lee, K. A. Shore. Nonlinear dynamics of semiconductor lasers with feedback and modulation. Opt. Express, 18, 16955-16972(2010).

    [12] A. Locquet. Routes to chaos of a semiconductor laser subjected to external optical feedback: a review. Photonics, 7, 22(2020).

    [13] N. Jiang, C. Xue, D. Liu, Y. Lv, K. Qiu. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. Opt. Lett., 42, 1055-1058(2017).

    [14] M. S. Islam, A. V. Kovalev, G. Coget, E. A. Viktorov, D. S. Citrin, A. Locquet. Staircase dynamics of a photonic microwave oscillator based on a laser diode with delayed optoelectronic feedback. Phys. Rev. Appl., 13, 064038(2020).

    [15] N. Li, W. Pan, A. Locquet, V. N. Chizhevsky, D. S. Citrin. Statistical Properties of an external-cavity semiconductor laser: experiment and theory. IEEE J. Sel. Top. Quantum Electron., 21, 553-560(2015).

    [16] Y. Hong, P. S. Spencer, K. A. Shore. Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection. IEEE J. Quantum Electron., 50, 236-242(2014).

    [17] P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, Y. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859-17867(2019).

    [18] J. Mork, B. Tromborg, P. L. Christiansen. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis. IEEE J. Quantum Electron., 24, 123-133(1988).

    [19] T. Sano. Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback. Phys. Rev. A, 50, 2719-2726(1994).

    [20] A. K. D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, M. Inubushi. Dynamics versus feedback delay time in photonic integrated circuits: mapping the short cavity regime. IEEE Photon. J., 9, 6600512(2017).

    [21] A. K. D. Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, K. Yoshimura. Photonic integrated circuits unveil crisis-induced intermittency. Opt. Express, 24, 22198-22209(2016).

    [22] A. K. D. Bosco, N. Sato, Y. Terashima, S. Ohara, A. Uchida, M. Inubushi. Random number generation from intermittent optical chaos. IEEE J. Sel. Top. Quantum Electron., 23, 1801208(2017).

    [23] A. Locquet, B. Kim, D. Choi, N. Li, D. S. Citrin. Initial-state dependence of the route to chaos of an external-cavity laser. Phys. Rev. A, 95, 023801(2017).

    [24] D. Choi, M. J. Wishon, C. Y. Chang, D. S. Citrin, A. Locquet. Multistate intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity. Chaos, 28, 011102(2018).

    [25] J. X. Dong, J. P. Zhuang, S. C. Chan. Tunable switching between stable and periodic states in a semiconductor laser with feedback. Opt. Lett., 42, 4291-4294(2017).

    [26] T. Zhang, Z. Jia, A. Wang, Y. Hong, L. Wang, Y. Guo, Y. Wang. Experimental observation of dynamic-state switching in VCSELs with optical feedback. IEEE Photon. Technol. Lett., 33, 335-338(2021).

    [27] S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, E. P. O’Reilly. Design of single-mode and two-color Fabry--Pérot lasers with patterned refractive index. IEEE J. Sel. Top. Quantum Electron., 13, 1157-1163(2007).

    [28] C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, J. O’Gorman. Discrete mode lasers for communication applications. IET Optoelectron., 3, 1-17(2009).

    [29] S. O’Brien, S. Osborne, D. Bitauld, N. Brandonisio, A. Amann, R. Phelan, B. Kelly, J. O’Gorman. Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers. IEEE Trans. Microw. Theory Tech., 58, 3083-3087(2010).

    [30] D. Chang, Z. Q. Zhong, J. M. Tang, P. Spencer, Y. H. Hong. Flat broadband chaos generation in a discrete-mode laser subject to optical feedback. Opt. Express, 28, 39076-39083(2020).

    [31] Z. Q. Zhong, Z. M. Wu, G. Q. Xia. Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback. Photon. Res., 5, 6-10(2017).

    [32] T. Heil, I. Fischer, W. Elsäßer. Coexistence of low-frequency fluctuations and stable emission on a single high-gain mode in semiconductor lasers with external optical feedback. Phys. Rev., 58, R2672-R2675(1998).

    [33] R. Lang, K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., 16, 347-355(1980).

    [34] X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, Y. Hao. Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays. IEEE J. Quantum Electron., 54, 2000308(2018).

    [35] L. Mashal, G. V. Sande, L. Gelens, J. Danckaert, G. Verschaffelt. Square-wave oscillations in semiconductor ring lasers with delayed optical feedback. Opt. Express, 20, 22503-22516(2012).

    [36] A. M. Kaplan, G. P. Agrawal, D. N. Maywar. Optical square-wave clock generation based on an all-optical flip-flop. IEEE Photon. Technol. Lett., 22, 489-491(2010).

    Zhuqiang Zhong, Da Chang, Wei Jin, Min Won Lee, Anbang Wang, Shan Jiang, Jiaxiang He, Jianming Tang, Yanhua Hong. Intermittent dynamical state switching in discrete-mode semiconductor lasers subject to optical feedback[J]. Photonics Research, 2021, 9(7): 1336
    Download Citation