• Photonics Research
  • Vol. 10, Issue 7, 1533 (2022)
Meng Li1、2、†, Chu Li1、2、†, Yang Chen3, Lan-Tian Feng3, Linyu Yan1、2, Qian Zhang1、2, Jueming Bao1、2, Bi-Heng Liu3, Xi-Feng Ren3、6、*, Jianwei Wang1、2、4、5, Shufeng Wang1、2、4、5, Yunan Gao1、2、4、5, Xiaoyong Hu1、2、4、5, Qihuang Gong1、2、4、5, and Yan Li1、2、4、5、7、*
Author Affiliations
  • 1State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
  • 3Key Laboratory of Quantum Information, CAS University of Science and Technology of China, Hefei 230026, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 6e-mail: renxf@ustc.edu.cn
  • 7e-mail: li@pku.edu.cn
  • show less
    DOI: 10.1364/PRJ.452539 Cite this Article Set citation alerts
    Meng Li, Chu Li, Yang Chen, Lan-Tian Feng, Linyu Yan, Qian Zhang, Jueming Bao, Bi-Heng Liu, Xi-Feng Ren, Jianwei Wang, Shufeng Wang, Yunan Gao, Xiaoyong Hu, Qihuang Gong, Yan Li. On-chip path encoded photonic quantum Toffoli gate[J]. Photonics Research, 2022, 10(7): 1533 Copy Citation Text show less
    References

    [1] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, S. Guo, L. Han, L. Hong, H.-L. Huang, Y.-H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, Q. Zhu, C.-Y. Lu, C.-Z. Peng, X. Zhu, J.-W. Pan. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 127, 180501(2021).

    [2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiya, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, J. M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574, 505-510(2019).

    [3] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [4] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 120, 260502(2018).

    [5] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, M. Müller. Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X, 7, 041061(2017).

    [6] N. H. Nickerson, Y. Li, S. C. Benjamin. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun., 4, 1756(2013).

    [7] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414, 883-887(2001).

    [8] B. Bartlett, A. Dutt, S. Fan. Deterministic photonic quantum computation in a synthetic time dimension. Optica, 8, 1515-1523(2021).

    [9] J. L. Brien. Optical quantum computing. Science, 318, 1567-1570(2007).

    [10] J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, D. Branning. Demonstration of an all-optical quantum controlled-NOT gate. Nature, 426, 264-267(2003).

    [11] T. B. Pittman, M. J. Fitch, B. C. Jacobs, J. D. Franson. Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A, 68, 032316(2003).

    [12] S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, A. Zeilinger. Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett., 93, 020504(2004).

    [13] R. Okamoto, J. L. O’Brien, H. F. Hofmann, S. Takeuchi. Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities. Proc. Natl. Acad. Sci. USA, 108, 10067-10071(2011).

    [14] Z. Zhao, A.-N. Zhang, Y.-A. Chen, H. Zhang, J.-F. Du, T. Yang, J.-W. Pan. Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits. Phys. Rev. Lett., 94, 030501(2005).

    [15] J.-P. Li, X. Gu, J. Qin, D. Wu, X. You, H. Wang, C. Schneider, S. Höfling, Y.-H. Huo, C.-Y. Lu, N.-L. Liu, L. Li, J.-W. Pan. Heralded nondestructive quantum entangling gate with single-photon sources. Phys. Rev. Lett., 126, 140501(2021).

    [16] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, A. G. White. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 5, 134-140(2009).

    [17] H.-L. Huang, W.-S. Bao, T. Li, F.-G. Li, X.-Q. Fu, S. Zhang, H.-L. Zhang, X. Wang. Deterministic linear optical quantum Toffoli gate. Phys. Lett. A, 381, 2673-2676(2017).

    [18] S. Ru, Y. Wang, M. An, F. Wang, P. Zhang, F. Li. Realization of a deterministic quantum Toffoli gate with a single photon. Phys. Rev. A, 103, 022606(2021).

    [19] Q. Zeng, T. Li, X. Song, X. Zhang. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light. Opt. Express, 24, 8186-8193(2016).

    [20] R. B. Patel, J. Ho, F. Ferreyrol, T. C. Ralph, G. J. Pryde. A quantum Fredkin gate. Sci. Adv., 2, e1501531(2016).

    [21] T. Ono, R. Okamoto, M. Tanida, H. F. Hofmann, S. Takeuchi. Implementation of a quantum controlled-SWAP gate with photonic circuits. Sci. Rep., 7, 45353(2017).

    [22] A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, J. L. Brien. Silica-on-silicon waveguide quantum circuits. Science, 320, 646-649(2008).

    [23] G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, J. L. O’Brien. Laser written waveguide photonic quantum circuits. Opt. Express, 17, 12546-12554(2009).

    [24] C. Anton, J. C. Loredo, G. Coppola, H. Ollivier, N. Viggianiello, A. Harouri, N. Somaschi, A. Crespi, I. Sagnes, A. Lemaitre, L. Lanco, R. Osellame, F. Sciarrino, P. Senellart. Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip. Optica, 6, 1471-1477(2019).

    [25] S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, R. Osellame. Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits. Optica, 5, 311-314(2018).

    [26] Q. Zhang, M. Li, J. Xu, Z. Lin, H. Yu, M. Wang, Z. Fang, Y. Cheng, Q. Gong, Y. Li. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photon. Res., 7, 503-507(2019).

    [27] F. Klauck, M. Heinrich, A. Szameit. Photonic two-particle quantum walks in Su–Schrieffer–Heeger lattices. Photon. Res., 9, A1-A7(2021).

    [28] A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni. Integrated photonic quantum gates for polarization qubits. Nat. Commun., 2, 566(2011).

    [29] J. Zeuner, A. N. Sharma, M. Tillmann, R. Heilmann, M. Gräfe, A. Moqanaki, A. Szameit, P. Walther. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits. Npj Quantum Inf., 4, 13(2018).

    [30] N. Spagnolo, L. Aparo, C. Vitelli, A. Crespi, R. Ramponi, R. Osellame, P. Mataloni, F. Sciarrino. Quantum interferometry with three-dimensional geometry. Sci. Rep., 2, 862(2012).

    [31] A. Crespi, R. Osellame, R. Ramponi, M. Bentivegna, F. Flamini, N. Spagnolo, N. Viggianiello, L. Innocenti, P. Mataloni, F. Sciarrino. Suppression law of quantum states in a 3D photonic fast Fourier transform chip. Nat. Commun., 7, 10469(2016).

    [32] Z. Q. Jiao, J. Gao, W. H. Zhou, X. W. Wang, R. J. Ren, X. Y. Xu, L. F. Qiao, Y. Wang, X. M. Jin. Two-dimensional quantum walks of correlated photons. Optica, 8, 1129-1135(2021).

    [33] H. Tang, C. Di Franco, Z.-Y. Shi, T.-S. He, Z. Feng, J. Gao, K. Sun, Z.-M. Li, Z.-Q. Jiao, T.-Y. Wang, M. S. Kim, X.-M. Jin. Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics, 12, 754-758(2018).

    [34] H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, X.-M. Jin. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv., 4, eaat3174(2018).

    [35] Q. Zhang, M. Li, Y. Chen, X. Ren, R. Osellame, Q. Gong, Y. Li. Femtosecond laser direct writing of an integrated path-encoded CNOT quantum gate. Opt. Mater. Express, 9, 2318-2326(2019).

    [36] T. Meany, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi, M. Delanty, M. J. Steel, A. Gilchrist, G. D. Marshall, A. G. White, M. J. Withford. Engineering integrated photonics for heralded quantum gates. Sci. Rep., 6, 25126(2016).

    [37] M. A. Nielsen, I. L. Chuang. Quantum Computing and Quantum Information(2000).

    [38] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, S. S. Somaroo. Experimental quantum error correction. Phys. Rev. Lett., 81, 2152-2155(1998).

    [39] A. Paetznick, B. W. Reichardt. Universal fault-tolerant quantum computation with only transversal gates and error correction. Phys. Rev. Lett., 111, 090505(2013).

    [40] G. A. Barbosa. Quantum half-adder. Phys. Rev. A, 73, 052321(2006).

    [41] A. Odeh, E. Abdelfattah. Quantum sort algorithm based on entanglement qubits {00, 11}. IEEE Long Island Systems, Applications and Technology Conference (LISAT), 1-5(2016).

    [42] K. A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, C. Monroe. Implementation of Grover’s quantum search algorithm in a scalable system. Phys. Rev. A, 72, 050306(2005).

    [43] M. Mičuda, M. Miková, I. Straka, M. Sedlák, M. Dušek, M. Ježek, J. Fiurášek. Tomographic characterization of a linear optical quantum Toffoli gate. Phys. Rev. A, 92, 032312(2015).

    [44] M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek. Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate. Phys. Rev. Lett., 111, 160407(2013).

    [45] Z. Liu, X. Yang, W. Han, R. Yan, T. Yan, P. Wang. Design of an optical Toffoli gate for reversible logic operation using silicon photonic integrated circuits. Proc. SPIE, 11763, 117633O(2021).

    [46] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter. Elementary gates for quantum computation. Phys. Rev. A, 52, 3457-3467(1995).

    [47] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [48] T. C. Ralph, K. J. Resch, A. Gilchrist. Efficient Toffoli gates using qudits. Phys. Rev. A, 75, 022313(2007).

    [49] R. Heilmann, M. Gräfe, S. Nolte, A. Szameit. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X and rotation gates for polarisation qubits. Sci. Rep., 4, 4118(2014).

    [50] G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, R. Osellame. Rotated waveplates in integrated waveguide optics. Nat. Commun., 5, 4249(2014).

    [51] M. Li, Q. Zhang, Y. Chen, X. Ren, Q. Gong, Y. Li. Femtosecond laser direct writing of integrated photonic quantum chips for generating path-encoded Bell states. Micromachines, 11, 1111(2020).

    [52] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, M. G. Thompson. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

    [53] T. B. Pittman, B. C. Jacobs, J. D. Franson. Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A, 64, 062311(2001).

    [54] J. Fiurášek. Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A, 73, 062313(2006).

    [55] C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [56] B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, I. A. Walmsley. Quantum teleportation on a photonic chip. Nat. Photonics, 8, 770-774(2014).

    [57] X.-M. Xiu, X. Geng, S.-L. Wang, C. Cui, Q.-Y. Li, Y.-Q. Ji, L. Dong. Construction of a polarization multiphoton controlled one-photon unitary gate assisted by the spatial and temporal degrees of freedom. Adv. Quantum Technol., 2, 1900066(2019).

    [58] L. Dong, S.-L. Wang, C. Cui, X. Geng, Q.-Y. Li, H.-K. Dong, X.-M. Xiu, Y.-J. Gao. Polarization Toffoli gate assisted by multiple degrees of freedom. Opt. Lett., 43, 4635-4638(2018).

    Meng Li, Chu Li, Yang Chen, Lan-Tian Feng, Linyu Yan, Qian Zhang, Jueming Bao, Bi-Heng Liu, Xi-Feng Ren, Jianwei Wang, Shufeng Wang, Yunan Gao, Xiaoyong Hu, Qihuang Gong, Yan Li. On-chip path encoded photonic quantum Toffoli gate[J]. Photonics Research, 2022, 10(7): 1533
    Download Citation