• Advanced Photonics
  • Vol. 3, Issue 3, 036003 (2021)
Xiaodong Cai1、†, Rong Tang1, Haoyang Zhou2, Qiushi Li1, Shaojie Ma2, Dongyi Wang2, Tong Liu2, Xiaohui Ling2、3, Wei Tan4、5, Qiong He2、6、7, Shiyi Xiao1、*, and Lei Zhou2、7、*
Author Affiliations
  • 1Shanghai University, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai, China
  • 2Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Shanghai, China
  • 3Hengyang Normal University, College of Physics and Electronic Engineering, Hengyang, China
  • 4CAEP, Microsystem and Terahertz Research Center, Chengdu, China
  • 5CAEP, Institute of Electronic Engineering, Mianyang, China
  • 6Fudan University, Academy for Engineering and Technology, Shanghai, China
  • 7Collaborative Innovation Centre of Advanced Microstructures, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.3.3.036003 Cite this Article Set citation alerts
    Xiaodong Cai, Rong Tang, Haoyang Zhou, Qiushi Li, Shaojie Ma, Dongyi Wang, Tong Liu, Xiaohui Ling, Wei Tan, Qiong He, Shiyi Xiao, Lei Zhou. Dynamically controlling terahertz wavefronts with cascaded metasurfaces[J]. Advanced Photonics, 2021, 3(3): 036003 Copy Citation Text show less
    References

    [1] R. Kakimi et al. Capture of a terahertz wave in a photonic-crystal slab. Nat. Photonics, 8, 657-663(2014).

    [2] X. Yang et al. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol., 34, 810-824(2016).

    [3] J. Ma, R. Shrestha et al. Security and eavesdropping in terahertz wireless links. Nature, 563, 89-93(2018).

    [4] D. M. Mittleman. Frontiers in terahertz sources and plasmonics. Nat. Photonics, 7, 666-669(2013).

    [5] R. A. Lewis. A review of terahertz sources. J. Phys. D Appl. Phys., 47, 374001(2014).

    [6] L. Vicarelli et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater., 11, 865-871(2012).

    [7] K. Peng et al. Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors. Nano Lett., 16, 4925-4931(2016).

    [8] L. Zhang et al. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater., 4, 818-833(2016).

    [9] Q. He et al. High-efficiency metasurfaces: principles, realization, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [10] Y. Tousi, E. Afshari. A high-power and scalable 2-D phased array for terahertz CMOS integrated systems. IEEE J. Solid-State Circ., 50, 597-609(2015).

    [11] K. Sengupta, T. Nagatsuma, D. M. Mittleman. Terahertz integrated electronic and hybrid electronic-photonic systems. Nat. Electron., 1, 622-635(2018).

    [12] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [13] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [14] S. Xiao et al. Spin-dependent optics with metasurfaces. Nanophotonics, 6, 215-234(2017).

    [15] S. Chen et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces. Adv. Mater., 31, 1802458(2019).

    [16] Z. Li et al. Few-layer metasurfaces with arbitrary scattering properties. Sci. China Phys. Mech. Astron., 63, 284202(2020).

    [17] Y. Zhao, A. Alù. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B, 84, 205428(2011).

    [18] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [19] J. Zi et al. Antireflection-assisted all-dielectric terahertz metamaterial polarization converter. Appl. Phys. Lett., 113, 101104(2018).

    [20] X. Yin et al. Photonic spin Hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [21] S. Xiao et al. Flexible coherent control of plasmonic spin-Hall effect. Nat. Commun., 6, 8360(2015).

    [22] K. Y. Bliokh et al. Spin-orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [23] B. Wang et al. Photonic topological spin Hall effect mediated by vortex pairs. Phys. Rev. Lett., 123, 266101(2019).

    [24] B. Wang et al. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect. Nat. Nanotechnol., 15, 450-456(2020).

    [25] W. T. Chen et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225-230(2014).

    [26] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [27] Z. L. Deng, G. Li. Metasurface optical holography. Mater. Today Phys., 3, 16-32(2017).

    [28] D. Wang et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small, 15, 1900483(2019).

    [29] H. Yang et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep., 6, 35692(2016).

    [30] H. X. Xu et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep., 6, 38255(2016).

    [31] C. Huang et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 5, 1700485(2017).

    [32] Y. Li et al. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater., 8, 1901548(2020).

    [33] X. G. Zhang et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 3, 165-171(2020).

    [34] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [35] M. Bouslama et al. Beam-switching antenna with a new reconfigurable frequency selective surface. IEEE Antennas Wireless Propag. Lett., 15, 1159-1162(2016).

    [36] T. Shan et al. Coding programmable metasurfaces based on deep learning techniques. IEEE J. Emerg. Sel. Top. Circuits Syst., 10, 114-125(2020).

    [37] L. Li et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [38] O. Yurduseven et al. Dynamically reconfigurable holographic metasurface aperture for a mills-cross monochromatic microwave camera. Opt. Express, 26, 5281-5291(2018).

    [39] T. Sleasman et al. Single-frequency microwave imaging with dynamic metasurface apertures. J. Opt. Soc. Am. B, 34, 1713-1726(2017).

    [40] A. V. Diebold et al. Passive microwave spectral imaging with dynamic metasurface apertures. Optica, 7, 527-536(2020).

    [41] S. Venkatesh et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron., 3, 785-793(2020).

    [42] H. Saeidi et al. A 4×4 distributed multi-layer oscillator network for harmonic injection and THz beamforming with 14 dBm EIRP at 416 GHz in a lensless 65 nm CMOS IC. IEEE Int. Solid- State Circuits Conf., 456-458(2020). https://doi.org/10.1109/ISSCC19947.2020.9063076

    [43] Z. Miao et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [44] T. T. Kim et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Adv. Opt. Mater., 6, 1700507(2018).

    [45] S. Ma et al. Ultra-wide band reflective metamaterial wave plates for terahertz waves. Europhys. Lett., 117, 37007(2017).

    CLP Journals

    [1] Xipu Dong, Jierong Cheng, Yiwu Yuan, Zhenyu Xing, Fei Fan, Xianghui Wang, Shengjiang Chang. Arbitrary large-gradient wavefront shaping: from local phase modulation to nonlocal diffraction engineering[J]. Photonics Research, 2022, 10(4): 896

    [2] Changqin Liu, Shunjia Wang, Sheng Zhang, Qingnan Cai, Peng Wang, Chuanshan Tian, Lei Zhou, Yizheng Wu, Zhensheng Tao. Active spintronic-metasurface terahertz emitters with tunable chirality[J]. Advanced Photonics, 2021, 3(5): 056002

    Xiaodong Cai, Rong Tang, Haoyang Zhou, Qiushi Li, Shaojie Ma, Dongyi Wang, Tong Liu, Xiaohui Ling, Wei Tan, Qiong He, Shiyi Xiao, Lei Zhou. Dynamically controlling terahertz wavefronts with cascaded metasurfaces[J]. Advanced Photonics, 2021, 3(3): 036003
    Download Citation