[1] K Deng, K Zhang, Q Li et al. High-operating temperature far-infrared Si:Ga blocked-impurity-band detectors. Applied physics letters, 120(2022).
[2] Jia-Xiang GUO, Run-Zhang XIE, Peng WANG et al. Infrared photodetectors for multidimensional optical information acquisition. J.Infrared Millim and Waves, 41, 40-60(2022).
[3] Y. Xiao, H. Zhu, K. Deng et al. Progress and challenges in blocked impurity band infrared detectors for space-based astronomy, Sci. China-Phys. Mech. Astron, 65, 287301(2022).
[4] Qian SHI, Shu-Kui ZHANG, Jian-Lu WANG et al. Progress on nBn infrared detectors. J. Infrared Millim.Waves, 41, 139-150(2022).
[5] Weida , Hu , Zhenhua et al. 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Optics Letters, 39(2014).
[6] W D Hu, X S Chen, Z H Ye et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Applied Physics Letters, 99(2011).
[7] Z.-H. Gan, B. Wang, D.-L. Liu et al. Status and development trends of space mechanical refrigeration system at liquid helium temperature, Journal of Zhejiang University. Engineering Science, 46, 2160-2177(2012).
[8] Zhi-hua GAN, Xuan TAO, Dong-li LIU et al. Development status of space cryogenic technology atliquid helium temperature in Japan. Journal of Zhejiang University. Engineering Science, 49, 1821-1835(2015).
[9] D. Liu, Z. Gan, A. de Waele et al. Temperature and mass-flow behavior of a He-4 Joule-Thomson cryocooler. International Journal of Heat and Mass Transfer, 109, 1094-1099(2017).
[10] A E Salomonovich, T M Sidyakina, A S Khaikin et al. Space helium cryocooler. Cryogenics, 21, 474-478(1981).
[11] J Inatani, K Narasaki, S Tsunematsu et al. Mechanical cryocooler and cryostat for submillimeter SIS mixer receiver in space. Proc Spie, 4540, 197-208(2001).
[12] Ross , Jr , R et al. NASA's Advanced Cryocooler Technology Development Program (ACTDP).. AIP Conference Proceedings, 823, 607-614(2006).
[13] D S Glaister, W Gully, R Ross et al. Ball Aerospace 4-6 K Space Cryocooler. Aip Conference Proceedings(2006).
[14] Banks Kimberly, Larson Melora, Aymergen Cagatay et al. James Webb Space Telescope Mid-Infrared Instrument cryocooler systems engineering. NASA Goddard Space Flight Ctr. (United States); Jet Propulsion Lab. (United States);SGT, Inc. (United States), 7017(2008).
[15] M Petach, D Durand, M Michaelian et al. MIRI cryocooler system design update, 9-12(2011).
[16] J Quan, Z J Zhou, Y J Liu et al. A miniature liquid helium temperature JT cryocooler for space application. Science China Technological Sciences, 57, 2236-2240(2014).
[17] Zhenjun Zhou. Research on 4K throttling cryocooler with high frequency multistage pulse tube pre-cooling. Technical Institute of Physics and Chemistry(2014).
[18] Sato Yoichi, Tanaka Kosuke, Sugita Hiroyuki et al. Lifetime test of the 4K Joule-Thomson cryocooler. Cryogenics.
[19] K S Liao, N Li, C Wang et al. Extended mode in blocked impurity band detectors for terahertz radiation detection. Applied Physics Letters, 105, 183903-65(2014).
[20] Wang , Y L , Liu , D L , Gan , Z H et al. Cooling-capacity characteristics of Helium-4 JT cryocoolers, IOP Conference Series. Materials Science and Engineering, 278(2017).
[21] Hejun Hui, Jiantang Song, Shaoshuai Liu et al. Energy conversion efficiency improvement of a Stirling type PTR for dual temperature cooling by adopting two active work-recovery phase shifters. International Journal of Refrigeration(2022).
[22] X Zhi, L Qiu, J M Pfotenhauer et al. cryogenic mechanism of the gas parcels in pulse tube cryocoolers under different phase angles. International Journal of Heat & Mass Transfer, 382-389(2016).
[23] X. Q Zhi, , L. Han, , M. Dietrich et al. A three-stage Stirling pulse tube cryocooler reached 4.26 K with He-4 working fluid. cryogenics, 93-96.
[24] D Wei, E Luo, X Wang et al. Impedance match for Stirling type cryocoolers. Cryogenics, 51, 168-172(2011).
[25] Dai Wei, Guoyao Yu, Shanglong Zhu et al. A 300 Hz thermoacoustically-driven pulse tube cryocooler for temperature below 100 K, Applied Physics Letters, 90, 024104(2007).
[26] Wang YIN, Wenting WU, Hejun HUI et al. Theoretical and Experimental Study on the Length-Diameter of the Regenerator in the Low Temperature Section of a 15 K Thermal-Coupled Two-Stage Pulse Tube Cryocooler. Journal of Xi'an Jiaotong University, 56, 184-194(2022).
[27] X Wang, Z Jian, C Shuai et al. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K. Cryogenics, 80, 193-198(2016).
[28] Bo Wang, Yijun Chao, Haoren Wang et al. A miniature Stirling cryocooler operating above 100Hz down to liquid nitrogen temperature, Applied Thermal Engineering,Volume, 186, 116524(2021).
[29] Y Guo, Y Chao, B Wang et al. A general model of Stirling cryocoolers and its verification. Energy Conversion and Management, 65(2019).
[30] X Zhi. Study on the output pressure amplitudes of the linear compressor based on the complex vector analysis method. International Journal of Refrigeration, 107(2019).
[31] Y.L. Wang, D.L. Liu, Z.H. Gan et al. Cooling-capacity characteristics of Helium-4 JT cryocoolers, (2017).
[32] Y. Shen, D. Liu, S. Chen et al. Study on cooling capacity characteristics of an open-cycle Joule-Thomson cryocooler working at liquid helium temperature. Applied Thermal Engineering, 166, 114667(2020).
[33] Z. Chen, S. Liu, Y. Wu et al. Performance testing and temperature fluctuations of a 4.5 K@ 150 mW Joule-Thomson closed cycle cryocooler for space applications, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012017(2022).
[34] Z. Chen, X. Cui, S. Liu et al. Study on cooling capacity characteristics of a helium Joule-Thomson cryocooler. Applied Thermal Engineering, 221, 119820.
[35] Zhichao Chen, Shaoshuai Liu, Zhenhua Jiang et al. Helium Joule-Thomson cryocooler below 4.5 K for infrared detectors, Proc. SPIE 12505, 125051.
[36] H Zhu, J Zhu, W Hu et al. Temperature-sensitive mechanism for silicon blocked-impurity-band photodetectors. Applied physics letters, 119(2021).