• Infrared and Laser Engineering
  • Vol. 47, Issue 12, 1206005 (2018)
Luo Hao1, Zhong Biao1、2, Lei Yongqing1, Shi Yanling2, and Yin Jianping11
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1206005 Cite this Article
    Luo Hao, Zhong Biao, Lei Yongqing, Shi Yanling, Yin Jianping1. Thermal load management of laser cooling of Yb3+: LuLiF4 crystal[J]. Infrared and Laser Engineering, 2018, 47(12): 1206005 Copy Citation Text show less
    References

    [1] Seletskiy D V, Epstein R, Sheik-Bahae M, et al. Laser cooling in solids: advances and prospects [J]. Rep Prog Phys, 2016, 79(9): 096401-096423.

    [2] Pringsheim P. Zwei bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung [J]. Z Phys, 1929, 57: 739-746.

    [3] Epstein R I, Buchwald M I. Observation of laser-induced fluorescence cooling of a solids [J]. Nature, 1995, 377: 500-502.

    [4] Seletskiy D V, Sheik-Bahae M. Laser cooling of solids to cryogenic temperatures [J]. Nat Photonics, 2010, 4(3): 161-164.

    [5] Zhang J, Xiong Q H. Laser cooling of semiconductor by 40 Kelvin [J]. Nature, 2013, 493: 504-508.

    [6] Qin W P, Zhang J H. Two basic mechanism in anti-Stokes fluorescence cooling of solids [J]. Chinese Journal of Luminescence, 1999, 20(2): 126-129. (in Chinese)

    [7] Dong G, Zhang X L. Energy transfer enhanced laser cooling in Ho3+ and Tm3+ co-doped lithium yttrium fluoride [J]. J Opt Soc Am B, 2013, 30(4): 939-944.

    [8] Zhang J, Xiong Q H. Laser cooling of organic-inorganic lead halide perovskites [J]. Nat Photonics, 2016, 10(2): 115-122.

    [9] Zhong B, Yin J P. Laser cooling of Yb3+-doped LuLiF4 crystal[J]. Opt Lett, 2014, 39(9): 2747-2750.

    [10] Zhong B, Yin J P. Cavity-enhanced laser cooling for Yb3+-doped fluoride crystal using a low-power diode laser [J]. J Opt Soc Am B, 2014, 31(9): 2116-2120.

    [11] Zhang C Q, Xu L. Study on anti-Stokes fluorescent cooling technique[J]. Infrared and Laser Engineering, 2002, 31(2): 95-100. (in Chinese)

    [12] Fang H, Wu Yunong. Expectation of anti-Stokes fluorescence cooling to space remote sensing [J]. Chinese Journal of Quantum Electronics, 2004, 21(4): 411-414. (in Chinese)

    [13] MHehlenP, Sheik-Bahae M, Epstein R I, et al. Materials for optical cryocoolers [J]. J Mater Chem C, 2013, 1: 7471-7478.

    [14] Dong G Z. Research on novel mechanism for laser cooling of rare-earth doped fluoride crystals [D]. Harbin: Harbin Engineering University, 2015. (in Chinese)

    [15] Melgaard S D, Sheik-Bahae M. Solid state optical refrigeration to sub-100 Kelvin regime[J]. Sci Rep, 2016, 6: 20380-20386.

    [16] Zhong B, Yin J P. Laser cooling of 5 mol% Yb3+: LuLiF4 crystal in air [J]. Opt Eng, 2017, 56(1): 011102-011113.

    [17] Zhong B, Yin J P. Laser cooling performance of Yb3+-doped LuLiF4 crystal[C]//Proc SPIE, 2016, 9765: 976506.

    [18] Jia Y H, Ji X M, Yin J P. Research on several parameters influencing on laser cooling of solids [J]. Acta Phys Sin, 2007, 56(3): 1770-1774. (in Chinese)

    [19] Zhong B. Laser cooling of the Yb3+-doped fluoride crystal [D]. Shanghai: East China Normal University, 2014. (in Chinese)

    [20] Melgaard S D. Cryogenic optical refrigeration: laser cooling of solids below 123 K[D]. Albuquerque: University of New Mexico, 2013.

    [21] Yan X P, Wang D S. Summary of anti-Stokes fluorescent cooling technique [J]. Infrared and Laser Engineering, 2008, 37(3): 474-480. (in Chinese)

    [22] Sheik-Bahae M, Epstein R I. Laser cooling of solids [J]. Laser Photonics Rev, 2009, 3(1-2): 67-84.

    [23] Edwards B C, Epstein R I. Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration [J]. J Appl Phys, 1999, 86(11): 6489-6493.

    [24] Optotherm, Inc. Emissivity in the Infrared [DB/OL]. 2018-01-25.http: //www.optotherm.com/emiss-table.htm.

    [25] Imangholi B, Sheik-Bahae M, Epstein R I, et al. Differential luminescence thermometry in semiconductor laser cooling [C]//Proc SPIE, 2006, 6115: 61151C.

    Luo Hao, Zhong Biao, Lei Yongqing, Shi Yanling, Yin Jianping1. Thermal load management of laser cooling of Yb3+: LuLiF4 crystal[J]. Infrared and Laser Engineering, 2018, 47(12): 1206005
    Download Citation