• Acta Optica Sinica
  • Vol. 42, Issue 3, 0327017 (2022)
Fengyu Lu1、2、3, Zhenqiang Yin1、2、3、*, Shang Wang1、2、3、**, Zehao Wang1、2、3, Wei Chen1、2、3, Guangcan Guo1、2、3, and Zhenfu Han1、2、3
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China
  • show less
    DOI: 10.3788/AOS202242.0327017 Cite this Article Set citation alerts
    Fengyu Lu, Zhenqiang Yin, Shang Wang, Zehao Wang, Wei Chen, Guangcan Guo, Zhenfu Han. Uncharacterized-Source Measurement-Device-Independent Quantum Key Distribution Experiment with over 50 km fiber[J]. Acta Optica Sinica, 2022, 42(3): 0327017 Copy Citation Text show less
    References

    [1] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances[J]. Science, 283, 2050-2056(1999).

    [2] Renner R. Security of quantum key distribution[J]. International Journal of Quantum Information, 6, 1-127(2008).

    [3] Shannon C E. Communication theory of secrecy systems[J]. The Bell System Technical Journal, 28, 656-715(1949).

    [4] Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM, 48, 351-406(2001).

    [5] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 85, 441-444(2000).

    [6] Scarani V, Bechmann-Pasquinucci H, Cerf N J et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 81, 1301(2009).

    [7] Yoshino K I, Fujiwara M, Nakata K et al. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses[J]. Npj Quantum Information, 4, 8(2018).

    [8] Liu W T, Sun S H, Liang L M et al. Proof-of-principle experiment of a modified photon-number-splitting attack against quantum key distribution[J]. Physical Review A, 83, 042326(2011).

    [9] Fung C H F, Qi B, Tamaki K et al. Phase-remapping attack in practical quantum-key-distribution systems[J]. Physical Review A, 75, 032314(2007).

    [10] Makarov V. Controlling passively quenched single photon detectors by bright light[J]. New Journal of Physics, 11, 065003(2009).

    [11] Acín A, Brunner N, Gisin N et al. Device-independent security of quantum cryptography against collective attacks[J]. Physical Review Letters, 98, 230501(2007).

    [12] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).

    [13] Tang Y L, Yin H L, Chen S J et al. Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters, 113, 190501(2014).

    [14] Yin H L, Chen T Y, Yu Z W et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 117, 190501(2016).

    [15] Wang X B, Peng C Z, Pan J W. Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source[J]. Applied Physics Letters, 90, 031110(2007).

    [16] Tang Y L, Yin H L, Ma X F et al. Source attack of decoy-state quantum key distribution using phase information[J]. Physical Review A, 88, 022308(2013).

    [17] Ding Y Y, Chen W, Chen H et al. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits[J]. Optics Letters, 42, 1023-1026(2017).

    [18] Liu J Y, Ding H J, Zhang C M et al. Practical phase-modulation stabilization in quantum key distribution via machine learning[J]. Physical Review Applied, 12, 014059(2019).

    [19] Yin Z Q. Fung C H F, Ma X F, et al. Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources[J]. Physical Review A, 90, 052319(2014).

    [20] Hwang W Y, Su H Y, Bae J. Improved measurement-device-independent quantum key distribution with uncharacterized qubits[J]. Physical Review A, 95, 062313(2017).

    [21] Wang C, Wang S, Yin Z Q et al. Experimental measurement-device-independent quantum key distribution with uncharacterized encoding[J]. Optics Letters, 41, 5596-5599(2016).

    [22] Zhou X Y, Ding H J, Zhang C H et al. Experimental three-state measurement-device-independent quantum key distribution with uncharacterized sources[J]. Optics Letters, 45, 4176-4179(2020).

    [23] Hwang W Y. Quantum key distribution with high loss: toward global secure communication[J]. Physical Review Letters, 91, 057901(2003).

    [24] Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light[J]. Physical Review A, 72, 012322(2005).

    [25] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 94, 230504(2005).

    [26] Wang X B. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors[J]. Physical Review A, 87, 012320(2013).

    [27] Zhou Y H, Yu Z W, Wang X B. Making the decoy-state measurement-device-independent quantum key distribution practically useful[J]. Physical Review A, 93, 042324(2016).

    [28] Yu Z W, Zhou Y H, Wang X B. Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method[J]. Physical Review A, 91, 032318(2015).

    [29] Chen F, Liu R P, Qi Z M. Design, fabrication and characterization of LiNbO3-based integrated optical waveguide Mach-Zehnder interferometer[J]. Acta Optica Sinica, 31, 0513001(2011).

    [30] Wang C, Yin Z Q, Wang S et al. Measurement-device-independent quantum key distribution robust against environmental disturbances[J]. Optica, 4, 1016-1023(2017).

    [31] Wang C, Song X T, Yin Z Q et al. Phase-reference-free experiment of measurement-device-independent quantum key distribution[J]. Physical Review Letters, 115, 160502(2015).

    [32] Huang Y, Zhao J Y, Wang J D et al. A real-time polarization compensation system based on wavelength-division multiplexing for optical fiber communication systems[J]. Acta Optica Sinica, 40, 1406003(2020).

    [33] Wang C, Wang F X, Chen H et al. Realistic device imperfections affect the performance of Hong-ou-Mandel interference with weak coherent states[J]. Journal of Lightwave Technology, 35, 4996-5002(2017).

    [34] Wang Q, Wang X B. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources[J]. Scientific Reports, 4, 4612(2014).

    [35] Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 86, 062319(2012).

    [36] Xue Y, Ma L H, Shi L et al. Performance analysis of MDI-QKD global estimation based on modified coherent source[J]. Chinese Journal of Quantum Electronics, 34, 446-450(2017).

    [37] Guo D B, Zhang Y H, Wang Y Y. Performance optimization for the reconciliation of Gaussian quantum key distribution[J]. Acta Optica Sinica, 34, 0127001(2014).

    Fengyu Lu, Zhenqiang Yin, Shang Wang, Zehao Wang, Wei Chen, Guangcan Guo, Zhenfu Han. Uncharacterized-Source Measurement-Device-Independent Quantum Key Distribution Experiment with over 50 km fiber[J]. Acta Optica Sinica, 2022, 42(3): 0327017
    Download Citation