• Advanced Photonics
  • Vol. 3, Issue 1, 016001 (2021)
Tong Cai1,2,3,†, Shiwei Tang4, Bin Zheng1,3,*, Guangming Wang2..., Wenye Ji2, Chao Qian1,3, Zuojia Wang1, Erping Li1,3 and Hongsheng Chen1,3,*|Show fewer author(s)
Author Affiliations
  • 1Zhejiang University, College of Information Science and Electronic Engineering, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • 2Air Force Engineering University, Air and Missile Defend College, Xi’an, China
  • 3Zhejiang University, ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Hangzhou, China
  • 4Ningbo University, Department of Physics, Faculty of Science, Ningbo, China
  • show less
    DOI: 10.1117/1.AP.3.1.016001 Cite this Article Set citation alerts
    Tong Cai, Shiwei Tang, Bin Zheng, Guangming Wang, Wenye Ji, Chao Qian, Zuojia Wang, Erping Li, Hongsheng Chen, "Ultrawideband chromatic aberration-free meta-mirrors," Adv. Photon. 3, 016001 (2021) Copy Citation Text show less
    References

    [1] J. B. Pendry et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773-4776(1996).

    [2] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [3] K. Shiraishi, T. Sato, S. Kawakami. Experimental verification of a form-birefringent polarization splitter. Appl. Phys. Lett., 58, 211-212(1991).

    [4] H. F. Ma et al. Independent control of differently-polarized waves using anisotropic gradient-index metamaterials. Sci. Rep., 4, 6337(2014).

    [5] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [6] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [7] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [8] J. Li, J. B. Pendry. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett., 101, 203901(2008).

    [9] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [10] X. Ni et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

    [11] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [12] A. M. H. Wong, G. V. Eleftheriades. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X, 8, 011036(2018).

    [13] L. Li et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [14] X. Zhu et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv., 3, e1602487(2017).

    [15] M. Khorasaninejad et al. Broadband and chiral binary dielectric meta-holograms. Sci. Adv., 2, e1501258(2016).

    [16] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [17] F. Aieta, M. A. Kats, F. Capasso. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

    [18] J. Ding et al. Dual-wavelength terahertz metasurfaces with independent phase and amplitude control at each wavelength. Sci. Rep., 6, 34020(2016).

    [19] O. Avayu et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [20] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [21] M. Khorasaninejad et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [22] S. L. Sun et al. Electromangetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380-479(2019).

    [23] Y. Zhou et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett., 18, 7529-7537(2018).

    [24] E. Arbabi et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [25] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [26] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [27] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [28] W. Sun et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl., 5, e16003(2016).

    [29] A. D. Dunkelberger et al. Active tuning of surface phonon polariton resonances via carrier photoinjection. Nat. Photonics, 12, 50-56(2018).

    [30] M. Ramezani et al. Plasmon-exciton-polariton lasing. Optica, 4, 31-37(2017).

    [31] T. Cai et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv. Opt. Mater., 5, 1600506(2017).

    [32] T. Cai et al. High-efficiency and full-space manipulation of electromagnetic wave-fronts with metasurfaces. Phys. Rev. Appl., 8, 034033(2017).

    [33] C. Pfeiffer et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys. Rev. Lett., 113, 023902(2014).

    [34] X. Wan et al. Multichannel direct transmissions of near-field information. Light Sci. Appl., 8, 60(2019).

    [35] Y. Yang et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater., 28, 6866-6871(2016).

    [36] C. Qian et al. Experimental observation of superscattering. Phys. Rev. Lett., 122, 063901(2019).

    [37] C. Wang et al. Superscattering of light in refractive-index near-zero environments. Prog. Electromagn. Res., 168, 15-23(2020).

    [38] F. Sun et al. A camouflage device without metamaterials. Prog. Electromagn. Res., 165, 107-117(2019).

    [39] B. Zheng et al. Remote concealing any arbitrary objects with multi-folded transformation optics. Light Sci. Appl., 5, e16177(2016).

    [40] W. Luo et al. Photonic spin hall effect with nearly 100% efficiency. Adv. Opt. Mater., 3, 1102-1108(2015).

    [41] M. Jia et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci. Appl., 8, 16(2019).

    [42] J. Zhang et al. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light Sci. Appl., 8, 53(2019).

    [43] X. Ding et al. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Adv. Mater., 27, 1195-1200(2015).

    [44] C. Qu et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett., 115, 235503(2015).

    [45] J. Hao et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett., 99, 063908(2007).

    [46] D. Ye et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett., 111, 187402(2013).

    [47] L. Zhou et al. Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields. Phys. Rev. Lett., 94, 243905(2005).

    [48] T. Cai et al. Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface. IEEE Trans. Antennas Propag., 63, 5629-5636(2015).

    [49] F. Monticone, N. M. Estakhri, A. Alù. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett., 110, 203903(2013).

    [50] H.-T. Chen et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [51] H. X. Xu et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep., 6, 38255(2016).

    [52] K. W. Allen et al. Multi-objective genetic algorithm optimization of frequency selective metasurfaces to engineer Ku-passband filter responses. Prog. Electromagn. Res., 167, 19-30(2020).

    [53] T. Cai et al. High-performance transmissive meta-surface for C-/X-band lens antenna application. IEEE Trans. Antennas Propag., 65, 3598-3606(2017).

    [54] L. Zhang et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun., 9, 1481(2018).

    CLP Journals

    [1] Yuxiang Jia, Jiafu Wang, Yajuan Han, Ruichao Zhu, Zhongtao Zhang, Jie Yang, Yueyu Meng, Yongfeng Li, Shaobo Qu, "Quasi-omnibearing retro-reflective metagrating protected by reciprocity," Photonics Res. 10, 843 (2022)

    Tong Cai, Shiwei Tang, Bin Zheng, Guangming Wang, Wenye Ji, Chao Qian, Zuojia Wang, Erping Li, Hongsheng Chen, "Ultrawideband chromatic aberration-free meta-mirrors," Adv. Photon. 3, 016001 (2021)
    Download Citation