• Advanced Photonics
  • Vol. 3, Issue 1, 016001 (2021)
Tong Cai1、2、3、†, Shiwei Tang4, Bin Zheng1、3、*, Guangming Wang2, Wenye Ji2, Chao Qian1、3, Zuojia Wang1, Erping Li1、3, and Hongsheng Chen1、3、*
Author Affiliations
  • 1Zhejiang University, College of Information Science and Electronic Engineering, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • 2Air Force Engineering University, Air and Missile Defend College, Xi’an, China
  • 3Zhejiang University, ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Hangzhou, China
  • 4Ningbo University, Department of Physics, Faculty of Science, Ningbo, China
  • show less
    DOI: 10.1117/1.AP.3.1.016001 Cite this Article Set citation alerts
    Tong Cai, Shiwei Tang, Bin Zheng, Guangming Wang, Wenye Ji, Chao Qian, Zuojia Wang, Erping Li, Hongsheng Chen. Ultrawideband chromatic aberration-free meta-mirrors[J]. Advanced Photonics, 2021, 3(1): 016001 Copy Citation Text show less
    References

    [1] J. B. Pendry et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773-4776(1996).

    [2] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [3] K. Shiraishi, T. Sato, S. Kawakami. Experimental verification of a form-birefringent polarization splitter. Appl. Phys. Lett., 58, 211-212(1991).

    [4] H. F. Ma et al. Independent control of differently-polarized waves using anisotropic gradient-index metamaterials. Sci. Rep., 4, 6337(2014).

    [5] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [6] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [7] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [8] J. Li, J. B. Pendry. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett., 101, 203901(2008).

    [9] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [10] X. Ni et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

    [11] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [12] A. M. H. Wong, G. V. Eleftheriades. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X, 8, 011036(2018).

    [13] L. Li et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [14] X. Zhu et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv., 3, e1602487(2017).

    [15] M. Khorasaninejad et al. Broadband and chiral binary dielectric meta-holograms. Sci. Adv., 2, e1501258(2016).

    [16] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [17] F. Aieta, M. A. Kats, F. Capasso. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

    [18] J. Ding et al. Dual-wavelength terahertz metasurfaces with independent phase and amplitude control at each wavelength. Sci. Rep., 6, 34020(2016).

    [19] O. Avayu et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [20] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [21] M. Khorasaninejad et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [22] S. L. Sun et al. Electromangetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380-479(2019).

    [23] Y. Zhou et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett., 18, 7529-7537(2018).

    [24] E. Arbabi et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [25] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [26] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [27] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [28] W. Sun et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl., 5, e16003(2016).

    [29] A. D. Dunkelberger et al. Active tuning of surface phonon polariton resonances via carrier photoinjection. Nat. Photonics, 12, 50-56(2018).

    [30] M. Ramezani et al. Plasmon-exciton-polariton lasing. Optica, 4, 31-37(2017).

    [31] T. Cai et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv. Opt. Mater., 5, 1600506(2017).

    [32] T. Cai et al. High-efficiency and full-space manipulation of electromagnetic wave-fronts with metasurfaces. Phys. Rev. Appl., 8, 034033(2017).

    [33] C. Pfeiffer et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys. Rev. Lett., 113, 023902(2014).

    [34] X. Wan et al. Multichannel direct transmissions of near-field information. Light Sci. Appl., 8, 60(2019).

    [35] Y. Yang et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater., 28, 6866-6871(2016).

    [36] C. Qian et al. Experimental observation of superscattering. Phys. Rev. Lett., 122, 063901(2019).

    [37] C. Wang et al. Superscattering of light in refractive-index near-zero environments. Prog. Electromagn. Res., 168, 15-23(2020).

    [38] F. Sun et al. A camouflage device without metamaterials. Prog. Electromagn. Res., 165, 107-117(2019).

    [39] B. Zheng et al. Remote concealing any arbitrary objects with multi-folded transformation optics. Light Sci. Appl., 5, e16177(2016).

    [40] W. Luo et al. Photonic spin hall effect with nearly 100% efficiency. Adv. Opt. Mater., 3, 1102-1108(2015).

    [41] M. Jia et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci. Appl., 8, 16(2019).

    [42] J. Zhang et al. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light Sci. Appl., 8, 53(2019).

    [43] X. Ding et al. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Adv. Mater., 27, 1195-1200(2015).

    [44] C. Qu et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett., 115, 235503(2015).

    [45] J. Hao et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett., 99, 063908(2007).

    [46] D. Ye et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett., 111, 187402(2013).

    [47] L. Zhou et al. Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields. Phys. Rev. Lett., 94, 243905(2005).

    [48] T. Cai et al. Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface. IEEE Trans. Antennas Propag., 63, 5629-5636(2015).

    [49] F. Monticone, N. M. Estakhri, A. Alù. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett., 110, 203903(2013).

    [50] H.-T. Chen et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [51] H. X. Xu et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep., 6, 38255(2016).

    [52] K. W. Allen et al. Multi-objective genetic algorithm optimization of frequency selective metasurfaces to engineer Ku-passband filter responses. Prog. Electromagn. Res., 167, 19-30(2020).

    [53] T. Cai et al. High-performance transmissive meta-surface for C-/X-band lens antenna application. IEEE Trans. Antennas Propag., 65, 3598-3606(2017).

    [54] L. Zhang et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun., 9, 1481(2018).

    CLP Journals

    [1] Yuxiang Jia, Jiafu Wang, Yajuan Han, Ruichao Zhu, Zhongtao Zhang, Jie Yang, Yueyu Meng, Yongfeng Li, Shaobo Qu. Quasi-omnibearing retro-reflective metagrating protected by reciprocity[J]. Photonics Research, 2022, 10(4): 843

    Tong Cai, Shiwei Tang, Bin Zheng, Guangming Wang, Wenye Ji, Chao Qian, Zuojia Wang, Erping Li, Hongsheng Chen. Ultrawideband chromatic aberration-free meta-mirrors[J]. Advanced Photonics, 2021, 3(1): 016001
    Download Citation