• Matter and Radiation at Extremes
  • Vol. 9, Issue 2, 024001 (2024)
J.-R. Marquès1、a), L. Lancia1, P. Loiseau2、3, P. Forestier-Colleoni1, M. Tarisien4, E. Atukpor4, V. Bagnoud5、6, C. Brabetz5, F. Consoli7, J. Domange4, F. Hannachi4, P. Nicolaï8, M. Salvadori7, and B. Zielbauer5
Author Affiliations
  • 1LULI, CNRS, École Polytechnique, CEA, Sorbonne Université, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
  • 2CEA, DAM, DIF, 91297 Arpajon Cedex, France
  • 3Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Chatel, France
  • 4CENBG, CNRS-IN2P3, Université de Bordeaux, 33175 Gradignan Cedex, France
  • 5GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
  • 6University of Darmstadt, Schloßgartenstr., 764289 Darmstadt, Germany
  • 7ENEA Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, Via Enrico Fermi 45, Frascati, Rome, Italy
  • 8CELIA, Université de Bordeaux–CNRS–CEA, 33405 Talence, France
  • show less
    DOI: 10.1063/5.0178253 Cite this Article
    J.-R. Marquès, L. Lancia, P. Loiseau, P. Forestier-Colleoni, M. Tarisien, E. Atukpor, V. Bagnoud, C. Brabetz, F. Consoli, J. Domange, F. Hannachi, P. Nicolaï, M. Salvadori, B. Zielbauer. Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves[J]. Matter and Radiation at Extremes, 2024, 9(2): 024001 Copy Citation Text show less
    References

    [1] D.Eichler, R.Blandford. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 154, 1(1987).

    [2] F. C.Jones, D. C.Ellison. The plasma physics of shock acceleration. Space Sci. Rev., 58, 259(1991).

    [3] P.Blasi, D.Caprioli, E.Amato. Non-linear diffusive acceleration of heavy nuclei in supernova remnant shocks. Astropart. Phys., 34, 447(2011).

    [4] R.Petre, M.Matsuura, S. S.Holt, U.Hwang, K.Koyama, M.Ozaki, E. V.Gotthelf. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature, 378, 255(1995).

    [5] C.De Santis, V.Bonvicini, E.Vannuccini, R.Carbone, M. P.De Pascale, G.Zampa, L.Rossetto, Y. T.Yurkin, M.Casolino, P.Spillantini, M.Pearce, S.Borisov, L.Grishantseva, N.Zampa, A.Monaco, F.Palma, G.Castellini, L.Marcelli, R.Sparvoli, V. V.Mikhailov, L.Bonechi, S. B.Ricciarini, M.Ricci, A.Leonov, W.Menn, R.Bellotti, A. V.Karelin, A. M.Galper, Y. I.Stozhkov, V.Malvezzi, N.Mori, O.Adriani, P.Picozza, E. A.Bogomolov, E.Mocchiutti, M.Boezio, N.Nikonov, A.Vacchi, A. N.Kvashnin, P.Carlson, R.Sarkar, P.Papini, G. A.Bazilevskaya, N.De Simone, F.Cafagna, V. G.Zverev, A.Bruno, G. C.Barbarino, S. V.Koldashov, A. G.Mayorov, L.Consiglio, J.Wu, S. Y.Krutkov, V.Di Felice, V.Malakhov, M.Simon, G.Vasilyev, G.Osteria, M.Bongi, S. A.Voronov, W.Gillard, G.Jerse, D.Campana, S.Bottai, C.Pizzolotto. PAMELA measurements of cosmic-ray proton and helium spectra. Science, 332, 69(2011).

    [6] A.Spitkovsky. Particle acceleration in relativistic collisionless shocks: Fermi process at last?. Astrophys. J., 682, L5(2008).

    [7] A.Spitkovsky. On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophys. J., 673, L39(2008).

    [8] R. P.Drake. The design of laboratory experiments to produce collisionless shocks of cosmic relevance. Phys. Plasmas, 7, 4690(2000).

    [9] A. D.Ash, D. M.Chambers, R. A. D.Grundy, R. O.Dendy, C.Courtois, K. G.McClements, N. C.Woolsey. Experiment on collisionless plasma interaction with applications to supernova remnant physics. Phys. Plasmas, 11, 3386(2004).

    [10] R. O.Dendy, Y. A.Ali, P.Helander, J. G.Kirk, K. G.McClements, P. G.Carolan, S. J.Rose, N. C.Woolsey, N. J.Conway, R. G.Evans, S. J.Pestehe, P. A.Norreys, R. A. D.Grundy, M. M.Notley. Collisionless shock and supernova remnant simulations on VULCAN. Phys. Plasmas, 8, 2439(2001).

    [11] S.Glenzer, B. B.Pollock, A.Spitkovsky, A.Grassi, H. G.Rinderknecht, W.Rozmus, F.Fiuza, B. A.Remington, J. S.Ross, D. D.Ryutov, S.Wilks, G.Gregori, S.Funk, G. F.Swadling, Y.Sakawa, C. K.Li, D. P.Higginson, H.-S.Park, C.Bruulsema, R. P.Drake. Electron acceleration in laboratory-produced turbulent collisionless shocks. Nat. Phys., 16, 916-920(2020).

    [12] C.Ren, L. O.Silva, J. R.Davies, W. B.Mori, M.Marti, R. A.Fonseca, F. S.Tsung. Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett., 92, 015002(2004).

    [13] E.Boella, L. O.Silva, S.Tochitsky, W. B.Mori, F. F.Fiuza, C.Joshi, A.Stockem, D.Haberberger, C.Gong, R. A.Fonseca. Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett., 109, 215001(2012).

    [14] L. O.Silva, F. F.Fiuza, C.Joshi, W. B.Mori, S.Tochitsky, D.Haberberger, A.Stockem, E.Boella, R. A.Fonseca. Ion acceleration from laser-driven electrostatic shocks. Phys. Plasmas, 20, 056304(2013).

    [15] C. A. J.Palmer, N. P.Dover, V.Yakimenko, M. N.Polyanskiy, Z.Najmudin, M.Babzien, J.Schreiber, P.Shkolnikov, G. I.Dudnikova, I.Pogorelsky, M.Ispiriyan. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett., 106, 014801(2011).

    [16] P.Migliozzi, T.Esirkepov, S.Bulanov, F.Terranova, F.Pegoraro, T.Tajima. Neutrino oscillation studies with laser-driven beam dump facilities. Nucl. Instrum. Methods Phys. Res., Sect. A, 540, 25(2005).

    [17] H.Powell, W.Fountain, K.Yasuike, S. C.Wilks, M.Roth, C.Brown, T. E.Cowan, S. P.Hatchett, F.Pegoraro, J.Johnson, M. H.Key, D. M.Pennington, R. A.Snavely, S. V.Bulanov, M. D.Perry, H.Ruhl, E. M.Campbell. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett., 86, 436(2001).

    [18] R.Ramis, J. J.Honrubia, M.Temporal, S.Atzeni. Fast ignition induced by shocks generated by laser-accelerated proton beams. Plasma Phys. Controlled Fusion, 51, 035010(2009).

    [19] S.Atzeni, J. J.Honrubia, M.Temporal. Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas, 9, 3098(2002).

    [20] F. P.Boody, H.Hora, J. C.Kelly, R.Hopfl. Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams, 14, 443(1996).

    [21] S.Bulanov, O.Willi, H.Ruhl, P.Patel, D. H.Campbell, M.Galimberti, A.Schiavi, F.Pegoraro, M.Borghesi, R. J.Clarke, L. A.Gizzi, A. J.MacKinnon, M. G.Haines. Electric field detection in laser–plasma interaction experiments via the proton imaging technique. Phys. Plasmas, 9, 2214(2002).

    [22] V. A.Smalyuk, O. L.Landen, J. P.Knauer, P. A.Amendt, R. D.Petrasso, J. A.Frenje, C. K.Li, P. K.Patel, A. J.Mackinnon, T. C.Sangster, J. R.Rygg, F. H.Séguin, R. P. J.Town, S. P.Hatchett. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett., 97, 135003(2006).

    [23] M.Borghesi, G.Pretzler, P.Audebert, O.Willi, K.L?wenbrück, L.Romagnani, J. C.Gauthier, S. V.Bulanov, A. J.Mackinnon, P.Patel, T.Toncian. Observation of collisionless shocks in laser–plasma experiments. Phys. Rev. Lett., 101, 025004(2008).

    [24] T. Z.Esirkepov, A.Kuznetsov, S. V.Bulanov, V. S.Khoroshkov, F.Pegoraro. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A, 299, 240(2002).

    [25] S. V.Bulanov, V. S.Khoroshkov. Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep., 28, 453(2002).

    [26] R.Ferrand, A.Antonetti, E.d’Humières, G.Grillon, J. P.Chambaret, E.Lefebvre, C.Albaret, S.Fritzler, V.Malka, S.Meyroneinc, D.Hulin. Practicability of protontherapy using compact laser systems. Med. Phys., 31, 1587(2004).

    [27] L.Karsch, E.Beyreuther, J.Pawelke, M.Gotz, K.Zeil, U.Masood, W.Enghardt, U.Schramm. Towards ion beam therapy based on laser plasma accelerators. Acta Oncol., 56, 1359(2017).

    [28] M.Zepf, P.Norreys, I.Spencer, E.Clark, A.Dangor, K.Ledingham, F.Beg, M.Tatarakis, T.McCanny, K.Krushelnick, P.McKenna, R.Singhal, I.Ross, R.Clarke, R.Allott. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Instrum. Methods Phys. Res., Sect. B, 183, 449(2001).

    [29] V.Malka, E.D’Humières, S.Fritzler, E.Lefebvre. Numerical simulation of isotope production for positron emission tomography with laser-accelerated ions. J. Appl. Phys., 100, 113308(2006).

    [30] E. A.Henry, S. P.Hatchett, M. H.Key, T. E.Cowan, R. A.Snavely, A.Offenberger, M. A.Stoyer, E. M.Campbell, M. D.Perry, M. S.Singh, A. B.Langdon, A.MacKinnon, S. C.Wilks, T. C.Sangster, T. W.Phillips, D. M.Pennington, J.Johnson, M.Roth, B. F.Lasinski, K.Yasuike. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945(2000).

    [31] M.Roth, M. H.Key, S. C.Wilks, T. E.Cowan, D.Pennington, R. A.Snavely, S.Hatchett, M.Singh, A.MacKinnon, A. B.Langdon. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542(2001).

    [32] G.Mourou, T.Tajima, T.Esirkepov, S. V.Bulanov, M.Borghesi. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett., 92, 175003(2004).

    [33] C.Bellei, R. G.Evans, S.Kar, A. P. L.Robinson, M.Zepf. Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 013021(2008).

    [34] F.Pegoraro, S.Veghini, A.Macchi. Light sail acceleration reexamined. Phys. Rev. Lett., 103, 085003(2009).

    [35] M.Geissler, S.Kar, M.Zepf, P.Gibbon, B.Qiao, M.Borghesi. Dominance of radiation pressure in ion acceleration with linearly polarized pulses at intensities of 1021 W cm−2. Phys. Rev. Lett., 100, 115002(2012).

    [36] B. J.Albright, K. J.Bowers, K. A.Flippo, T. J. T.Kwan, B. M.Hegelich, J. C.Fernandez, L.Yin. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas, 14, 056706(2007).

    [37] K. J.Bowers, J. C.Fernandez, D.Jung, M.Zepf, S.Letzring, K.Markey, R. P.Johnson, K. A.Flippo, H.-C.Wu, B. M.Hegelich, B. J.Albright, J.Schreiber, D. C.Gautier, T.Shimada, D.Habs, S. G.Rykovanov, D.Kiefer, V. K.Liechtenstein, A.Henig, L.Yin. Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett., 103, 045002(2009).

    [38] S. V.Bulanov, T.Nakamura, T. Z.Esirkepov, M.Kando. High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett., 105, 135002(2010).

    [39] E.Esarey, J. L.Vay, C. G. R.Geddes, Q.Ji, S.Steinke, C. B.Schroeder, J.Bin, J.Park, S. S.Bulanov, T.Schenkel, W. P.Leemans. Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas, 26, 103108(2019).

    [40] J. S.Green, N. P.Dover, C. A. J.Palmer, A. E.Dangor, P. S.Foster, J.Schreiber, P.Shkolnikov, V.Yakimenko, I.Pogorelsky, M.Babzien, Z.Najmudin, M. N.Polyanskiy, G. I.Dudnikova, D.Neely, M.Ispiriyan. Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target. Phys. Plasmas, 18, 056705(2011).

    [41] C.Gong, C.Joshi, W. B.Mori, L.Silva, F.Fiuza, R. A.Fonseca, S.Tochitsky, D.Haberberger. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys., 8, 95(2012).

    [42] I.Pogorelsky, M. N.Polyanskiy, O.Tresca, Z.Najmudin, P.Shkolnikov, N. P.Dover, C.Maharjan, N.Cook. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target. Phys. Rev. Lett., 115, 094802(2015).

    [43] M.Babzien, Z.Najmudin, I.Pogorelsky, Y.Chen, D.Gordon, M.Helle, N.Dover, A.Ting, O.Ettlinger, M.Polyanskiy. Laser acceleration of protons with an optically shaped, near-critical hydrogen gas target. AIP Conf. Proc, 1812, 090002(2017).

    [44] P.Antici, A. M.Schroer, G.Revet, L. O.Silva, O.Willi, M.Bailly-Grandvaux, M.Vranic, J. J.Santos, T.Gangolf, H.Pépin, S. N.Chen, J.Fuchs, E.Boella, M.Starodubtsev, P.Loiseau, E.d’Humières. Collimated protons accelerated from an overdense gas jet irradiated by a 1 μm wavelength high-intensity short-pulse laser. Sci. Rep., 7, 13505(2017).

    [45] M.Tarisien, P.Puyuelo-Valdes, E.d’Humieres, J.-R.Marquès, J.Domange, X.Ribeyre, J. L.Henares, M.Ehret, T.Ceccotti, L.Lancia, J. J.Santos, V.Tikhonchuk, F.Hannachi. Proton acceleration by collisionless shocks using a supersonic H2 gas-jet target and high-power infrared laser pulses. Phys. Plasmas, 26, 123109(2019).

    [46] P.Patel, R.Fedosejevs, B. B.Pollock, D.Haberberger, F.Albert, F.Fiuza, A.Pak, L.Manzoor, S.Kerr, L.Divol, M.Gauthier, D.Froula, S.Tochitsky, N.Lemos, C.Joshi, A.Link, A.Longman, S. H.Glenzer. Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1 μm lasers. Phys. Rev. Accel. Beams, 21, 103401(2018).

    [47] A.Pak, N.Lemos, S.Tochitsky, D.Haberberger, F.Fiuza, A.Link, C.Joshi, D. H.Froula. Laser-driven collisionless shock acceleration of ions from near-critical plasmas. Phys. Plasmas, 27, 083102(2020).

    [48] L.Lancia, J.-R.Marquès, E.d’Humières, P.Puyuelo-Valdes, O.Larroche, J.Santos, V.Tikhonchuk, L.Romagnani, F.Hannachi, J.Bonvalet, P.Nicola?, M.Tarisien, J.Domange, P.Loiseau. Over-critical sharp-gradient plasma slab produced by the collision of laser-induced blast-waves in a gas jet: Application to high-energy proton acceleration. Phys. Plasmas, 28, 023103(2021).

    [49] P.Forestier-Colleoni, E.Atukpor, L.Lancia, P.Loiseau, J.Domange, M.Tarisien, V.Tikhonchuk, F.Hannachi, D.Raffestin, J.-R.Marquès, P.Nicola?, J.Bonvalet, E.d’Humières. Laser-driven collisionless shock acceleration of protons from gas jets tailored by one or two nanosecond beams. Phys. Plasmas, 28, 113102(2021).

    [50] F.Hannachi, J. L.Henares, P.Puyuelo-Valdes, M.Ehret, T.Ceccotti, M.Versteegen, M.Tarisien, J. J.Santos, J.-R.Marquès, F.Gobet, L.Lancia. Development of gas jet targets for laser–plasma experiments at near-critical density. Rev. Sci. Instrum., 90, 063302(2019).

    [51] A. G. R.Thomas, D. W.Litzenberg, K.Krushelnick, V. Y.Bychenkov, T.Matsuoka, S. S.Bulanov, L.Willingale, A.Maksimchuk, G.Kalinchenko, V.Yanovsky, V.Chvykov. Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas, 17, 043105(2010).

    [52] X.-H.Yang, Y.Zhao, G.-B.Zhang, J.-Z.Quan, J.-X.Liu, J.Zhao, Y.-Y.Ma, X.-P.Wang, F.-Q.Shao, T.-P.Yu. High-flux positrons generation via two counter-propagating laser pulses irradiating near-critical-density plasmas. Phys. Plasmas, 25, 103106(2018).

    [53] X. L.Zhu, Y.Yin, A.Pukhov, T. P.Yu, I. C. E.Turcu, Z. M.Sheng. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun., 7, 13686(2016).

    [54] P.Christ, B.Borm, V. G.Pimenov, O. N.Rosmej, N.Zahn, T.Radon, N. E.Andreev, G.Sklizkov, S.Zaehter, L. P.Pugachev, A.Sokolov, N. G.Borisenko, D.Khaghani, F.Horst. Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays. New J. Phys., 21, 043044(2019).

    [55] V. Y.Bychenkov, D.Umstadter, V. N.Novikov, A.Maksimchuk, G. S.Sarkisov, R.Wagner, G.Mourou, S.-Y.Chen, V. T.Tikhonchuk. Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a he jet. Phys. Rev. E, 59, 7042(1999).

    [56] M. I. K.Santala, D.Neely, K.Krushelnick, Z.Najmudin, V.Malka, M.Tatarakis, R.Allott, E. L.Clark, C.Danson, A. E.Dangor, M.Salvati. Multi-MeV ion production from high-intensity laser interactions with underdense plasmas. Phys. Rev. Lett., 83, 737(1999).

    [57] S. P. D.Mangles, A. E.Dangor, R. J.Clarke, B.Walton, E. L.Clark, R. G.Evans, K.Krushelnick, M.Tatarakis, M.Tzoufras, S.Fritzler, C.Hernandez-Gomez, M. S.Wei, Z.Najmudin, W.Mori, D.Neely, A.Gopal. Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction. Phys. Rev. Lett., 93, 155003(2004).

    [58] A. B.Langdon, S. C.Wilks, M.Tabak, W. L.Kruer. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383(1992).

    [59] F.Tsung, D. J.Haberberger, S. Y.Tochitsky, C.Joshi, W. B.Mori. CO2 Laser acceleration of forward directed MeV proton beams in a gas target at critical plasma density. J. Plasma Phys., 78, 373(2012).

    [60] L.Ceurvorst, J.Sadler, R. H. H.Scott, M. C.Levy, P. A.Norreys, M.Skramic, R. M. G. M.Trines, N.Ratan, M. F.Kasim, L. O.Silva, T. W.Huang, M.Vranic. Mitigating the hosing instability in relativistic laser–plasma interactions. New J. Phys., 18, 053023(2016).

    [61] R. Z.Sagdeev. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys., 4, 23(1966).

    [62] O.Morice, A.Grisollet, G.Kluth, S.Bernard, L.Jacquet, S.Liberatore, P.Hoch, I.Marmajou, E.Lefebvre, P.Gauthier, P.-E.Masson-Laborde, C.Esnault, S.Laffite, J.-L.Willien. Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations. Nucl. Fusion, 59, 032010(2019).

    J.-R. Marquès, L. Lancia, P. Loiseau, P. Forestier-Colleoni, M. Tarisien, E. Atukpor, V. Bagnoud, C. Brabetz, F. Consoli, J. Domange, F. Hannachi, P. Nicolaï, M. Salvadori, B. Zielbauer. Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves[J]. Matter and Radiation at Extremes, 2024, 9(2): 024001
    Download Citation