• Journal of Semiconductors
  • Vol. 42, Issue 9, 092601 (2021)
Li Wang1, Yufeng Han1, Hongchen Wang1, Yaojie Han1, Jinhua Liu1, Gang Lu1, and Haidong Yu1、2
Author Affiliations
  • 1Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), Nanjing 211816, China
  • 2Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
  • show less
    DOI: 10.1088/1674-4926/42/9/092601 Cite this Article
    Li Wang, Yufeng Han, Hongchen Wang, Yaojie Han, Jinhua Liu, Gang Lu, Haidong Yu. A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I[J]. Journal of Semiconductors, 2021, 42(9): 092601 Copy Citation Text show less
    References

    [1] M I Mohammed, M P Y Desmulliez. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip, 11, 569(2011).

    [2] S Ko, B Kim, S S Jo et al. Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. Biosens Bioelectron, 23, 51(2007).

    [3] X Y Guo, L J Zong, Y C Jiao et al. Signal-enhanced detection of multiplexed cardiac biomarkers by a paper-based fluorogenic immunodevice integrated with zinc oxide nanowires. Anal Chem, 91, 9300(2019).

    [4] C Zhang, P F Du, Z J Jiang et al. A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Anal Chim Acta, 999, 123(2018).

    [5] H J Kim, W L Shelver, E C Hwang et al. Automated flow fluorescent immunoassay for part per trillion detection of the neonicotinoid insecticide thiamethoxam. Anal Chim Acta, 571, 66(2006).

    [6] M H Wang, J J Liu, X L Qin et al. Electrochemiluminescence detection of cardiac troponin I based on Au-Ag alloy nanourchins. Analyst, 145, 873(2020).

    [7] Z J Yang, J Shen, J Li et al. An ultrasensitive streptavidin-functionalized carbon nanotubes platform for chemiluminescent immunoassay. Anal Chim Acta, 774, 85(2013).

    [8] Y J Zhao, X H Liu, J Li et al. Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta, 150, 81(2016).

    [9] L Gao, Q F Yang, P Wu. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst, 145, 4069(2020).

    [10] A W Martinez, S T Phillips, M J Butte et al. Patterned paper as a platform for inexpensive, low-Volume, portable bioassays. Angew Chem Int Ed, 46, 1318(2007).

    [11] Y C Jiao, C Du, L J Zong et al. 3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay. Sens Actuators B, 306, 127239(2020).

    [12] R R Nair. Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex Print Electron, 5, 045004(2020).

    [13] W Yuan, X Z Wu, W B Gu et al. Printed stretchable circuit on soft elastic substrate for wearable application. J Semicond, 39, 015002(2018).

    [14] L J Zong, Y C Jiao, X Y Guo et al. Paper-based fluorescent immunoassay for highly sensitive and selective detection of norfloxacin in milk at picogram level. Talanta, 195, 333(2019).

    [15] L J Zong, Y F Han, L Gao et al. A transparent paper-based platform for multiplexed bioassays by wavelength-dependent absorbance/transmittance. Analyst, 144, 7157(2019).

    [16] D R Wang, Y F Mei, G S Huang. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application. J Semicond, 39, 011002(2018).

    [17] Z Y Li, X Huang, G Lu. Recent developments of flexible and transparent SERS substrates. J Mater Chem C, 8, 3956(2020).

    [18] M Z Zou, Y Ma, X Yuan et al. Flexible devices: from materials, architectures to applications. J Semicond, 39, 011010(2018).

    [19] H Wang, H Li, Y Huang et al. A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens Bioelectron, 142, 111531(2019).

    [20] M Naguib, M Kurtoglu, V Presser et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 23, 4248(2011).

    [21] Z H Ren, D C Qi, P Sonar et al. Flexible sensors based on hybrid materials. J Semicond, 41, 040402(2020).

    [22] M Naguib, V N Mochalin, M W Barsoum et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater, 26, 992(2014).

    [23] M Naguib, O Mashtalir, J Carle et al. Two-dimensional transition metal carbides. ACS Nano, 6, 1322(2012).

    [24] G P Neupane, T Yildirim, L L Zhang et al. Emerging 2D MXene/organic heterostructures for future nanodevices. Adv Funct Mater, 30, 2005238(2020).

    [25] R Xiao, C X Zhao, Z Y Zou et al. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B, 268, 118382(2020).

    [26] Y Meng, J C Ho. MXene-based wearable biosensor. J Semicond, 40, 110202(2019).

    [27] Z Li, Y Wu. 2D early transition metal carbides (MXenes) for catalysis. Small, 15, 1804736(2019).

    [28] B Ahmed, A EI Ghazaly, J Rosen. i-MXenes for energy storage and catalysis. Adv Funct Mater, 30, 2000894(2020).

    [29] K Huang, Z J Li, J Lin et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev, 47, 5109(2018).

    [30] H X Zhang, Z H Wang, Q X Zhang et al. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron, 124, 184(2019).

    [31] Q Jiang, N Kurra, M Alhabeb et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater, 8, 1703043(2018).

    [32] Q Y Yang, Z Xu, B Fang et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A, 5, 22113(2017).

    [33] Y T Du, X Kan, F Yang et al. MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl Mater Inter, 10, 32867(2018).

    [34] B Ahmed, D H Anjum, Y Gogotsi et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 34, 249(2017).

    [35] B Ahmed, D H Anjum, M N Hedhili et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 8, 7580(2016).

    [36] Y Wang, J P Luo, J T Liu et al. Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing, of 17 beta-estradiol. Biosens Bioelectron, 107, 47(2018).

    [37] G L Zhang, T C Wang, Z H Xu et al. Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption. Chem Commun, 56, 11283(2020).

    [38] L D White, C P Tripp. Reaction of (3-Aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces. J Colloid Interf Sci, 232, 400(2000).

    [39] J M Lei, X M Chen. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes. J Semicond, 36, 083006(2015).

    [40] S P Wang, J J Wang, Y F Zhu et al. Cantilever with immobilized antibody for liver cancer biomarker detection. J Semicond, 35, 104008(2014).

    [41] L Y Miao, L Jiao, Q R Tang et al. A nanozyme-linked immunosorbent assay for dual-modal colorimetric and ratiometric fluorescent detection of cardiac troponin I. Sens Actuators B, 288, 60(2019).

    [42] S Lee, S H Kang. Quenching effect on gold nano-patterned cardiac troponin I chip by total internal reflection fluorescencemicroscopy. Talanta, 104, 32(2013).

    [43] F Torabi, F H R Mobini, B Danielsson et al. Development of a plasma panel test for detection of human myocardial. Biosens Bioelectron, 22, 1218(2007).

    [44] M M Gong, D Sinton. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev, 117, 8447(2017).

    [45] E Noviana, C P McCord, K M Clark et al. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip, 20, 9(2019).

    Li Wang, Yufeng Han, Hongchen Wang, Yaojie Han, Jinhua Liu, Gang Lu, Haidong Yu. A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I[J]. Journal of Semiconductors, 2021, 42(9): 092601
    Download Citation