• Acta Optica Sinica
  • Vol. 39, Issue 11, 1124001 (2019)
Sa Yang, Renlong Zhou*, Dan Liu, Yongming Zhao, Qiawu Lin, and Shuang Li
Author Affiliations
  • School of Physics and Information Engineering, Guangdong University of Education, Guangzhou, Guangdong 510303, China
  • show less
    DOI: 10.3788/AOS201939.1124001 Cite this Article Set citation alerts
    Sa Yang, Renlong Zhou, Dan Liu, Yongming Zhao, Qiawu Lin, Shuang Li. Modulation and Sensing Properties of Graphene Plasma Based on Surface Electric Current Boundary Condition[J]. Acta Optica Sinica, 2019, 39(11): 1124001 Copy Citation Text show less
    References

    [1] Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 6, 3677-3694(2012). http://www.ncbi.nlm.nih.gov/pubmed/22512399

    [2] Chen X, Wang Y, Xiang Y J et al. A broadband optical modulator based on a graphene hybrid plasmonic waveguide[J]. Journal of Lightwave Technology, 34, 4948-4953(2016). http://ieeexplore.ieee.org/document/7574340/

    [3] Miao J S, Hu W D, Jing Y L et al. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays[J]. Small, 11, 2392-2398(2015). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM25630636.aspx

    [4] Xiao T H, Gan L, Li Z Y. Graphene surface plasmon polaritons transport on curved substrates[J]. Photonics Research, 3, 300-307(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160106000165sYv2x5

    [5] Koppens F H L, Chang D E. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 11, 3370-3377(2011). http://europepmc.org/abstract/med/21766812

    [6] Ni Z Y, Ma L L, Du S C et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 11, 9854-9862(2017). http://pubs.acs.org/doi/10.1021/acsnano.7b03569

    [7] Wang J L, Fang H H, Wang X D et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Small, 13, 1700894(2017). http://europepmc.org/abstract/MED/28597486

    [8] Guo N, Hu W D, Chen X S et al. Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates[J]. Optics Express, 21, 1606-1614(2013). http://www.ncbi.nlm.nih.gov/pubmed/23389145

    [9] Khavasi A. Design of ultra-broadband graphene absorber using circuit theory[J]. Journal of the Optical Society of America B, 32, 1941-1946(2015). http://www.opticsinfobase.org/abstract.cfm?uri=josab-32-9-1941

    [10] Shi Z, Gan L, Xiao T H et al. All-optical modulation of a graphene-cladded silicon photonic crystal cavity[J]. ACS Photonics, 2, 1513-1518(2015). http://pubs.acs.org/doi/10.1021/acsphotonics.5b00469

    [11] Yang S, Zhou R L, Liu Y M et al. Hybrid graphene/metal plasmonic fiber-optic sensing application[J]. Proceedings of SPIE, 11023, 110234M(2019).

    [12] Yang Y, Shi Z, Li J F et al. Optical forces exerted on a graphene-coated dielectric particle by a focused Gaussian beam[J]. Photonics Research, 4, 65-69(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160928000014IeKhNk

    [13] Vashist S K. Luong J H T. Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites[J]. Carbon, 84, 519-550(2015). http://www.sciencedirect.com/science/article/pii/S0008622314012135

    [14] Liu S Y, Huang L, Li J F et al. Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods[J]. The Journal of Physical Chemistry C, 117, 10636-10642(2013). http://pubs.acs.org/doi/abs/10.1021/jp4001626

    [15] Barzegar-Parizi S, Tavakol M R, Khavasi A. Deriving surface impedance for 2-D arrays of graphene patches using a variational method[J]. IEEE Journal of Quantum Electronics, 53, 16594874(2017).

    [16] Zhu T F, Zhou Y H, Lou Y J et al. Plasmonic computing of spatial differentiation[J]. Nature Communications, 8, 15391(2017). http://europepmc.org/abstract/MED/28524882

    [17] Liu X M, Yang H R, Cui Y D et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers[J]. Scientific Reports, 6, 26024(2016). http://europepmc.org/articles/PMC4867430/

    [18] Dhanabalan S C, Ponraj J S, Zhang H et al. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials[J]. Nanoscale, 8, 6410-6434(2016). http://www.ncbi.nlm.nih.gov/pubmed/26935809

    [19] Li Z Q, Feng D D, Li X et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure[J]. Acta Optica Sinica, 38, 0124001(2018).

    [20] Yang X X, Kong X T, Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 64, 106801(2015).

    [21] Khavasi A. Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons[J]. Optics Letters, 38, 3009-3012(2013).

    [22] Nayyeri V, Soleimani M, Ramahi O M. Modeling graphene in the finite-difference time-domain method using a surface boundary condition[J]. IEEE Transactions on Antennas and Propagation, 61, 4176-4182(2013). http://ieeexplore.ieee.org/document/6516967/

    [23] Ryzhii V, Otsuji T, Ryzhii M et al. Effect of plasma resonances on dynamic characteristics of double graphene-layer optical modulator[J]. Journal of Applied Physics, 112, 104507(2012). http://scitation.aip.org/content/aip/journal/jap/112/10/10.1063/1.4766814

    [24] Liu D, Wu L X, Liu Q et al. Plasmon switching effect based on graphene nanoribbon pair arrays[J]. Optics Communications, 377, 74-82(2016). http://www.sciencedirect.com/science/article/pii/S0030401816303716

    [25] Zhou R L, Yang S, Liu D et al. Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays[J]. Optics Express, 25, 31478-31491(2017). http://europepmc.org/abstract/MED/29245823

    [26] Xia S X, Zhai X, Wang L L et al. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers[J]. Optics Express, 24, 17886-17899(2016). http://www.ncbi.nlm.nih.gov/pubmed/27505756

    [27] Xia S X, Zhai X, Wang L L et al. Plasmonically induced transparency in double-layered graphene nanoribbons[J]. Photonics Research, 6, 692-702(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180704000072fMiOlR

    [28] Yu R W, Cox J D. Saavedra J R M, et al. Analytical modeling of graphene plasmons[J]. ACS Photonics, 4, 3106-3114(2017).

    [29] Marini A. Silveiro I, de Abajo F J G. Molecular sensing with tunable graphene plasmons[J]. ACS Photonics, 2, 876-882(2015).

    [30] Zhang C L, Xin Z Q, Min C J et al. Refractive index sensing imaging technology based on optical surface wave[J]. Acta Optica Sinica, 39, 0126009(2019).

    [31] Dhanabalan S C, Ponraj J S, Guo Z N et al. Emerging trends in phosphorene fabrication towards next generation devices[J]. Advanced Science, 4, 1600305(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5473329/

    [32] Deng Y, Cao G T, Yang H et al. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities[J]. Scientific Reports, 7, 10639(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5587742/

    [33] Pawliszewska M, Ge Y Q, Li Z J et al. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber[J]. Optics Express, 25, 16916-16921(2017). http://www.ncbi.nlm.nih.gov/pubmed/28789191

    [34] Zhou R L, Peng J, Yang S et al. Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application[J]. Nanoscale, 10, 18878-18891(2018).

    [35] Gao W L, Shu J, Qiu C Y et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 6, 7806-7813(2012). http://pubs.acs.org/doi/abs/10.1021/nn301888e

    [36] Zhang C B, Ning T G, Li J et al. Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper[J]. Optics & Laser Technology, 102, 12-16(2018). http://www.sciencedirect.com/science/article/pii/S0030399217312860

    [37] Ye T, Wang B, Wang C et al. Graphene plasmonics: approaching the intrinsic lifetime and modulating a graphene plasmonic resonance at a few hundred GHz (advanced optical materials 11/2019)[J]. Advanced Optical Materials, 7, 1970040(2019). http://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201900315

    Sa Yang, Renlong Zhou, Dan Liu, Yongming Zhao, Qiawu Lin, Shuang Li. Modulation and Sensing Properties of Graphene Plasma Based on Surface Electric Current Boundary Condition[J]. Acta Optica Sinica, 2019, 39(11): 1124001
    Download Citation