• Advanced Photonics
  • Vol. 1, Issue 4, 046003 (2019)
Evgenii Narimanov*
Author Affiliations
  • Purdue University, School of Electrical and Computer Engineering, Birck Nanotechnology Center, West Lafayette, Indiana, United States
  • show less
    DOI: 10.1117/1.AP.1.4.046003 Cite this Article Set citation alerts
    Evgenii Narimanov. Ghost resonance in anisotropic materials: negative refractive index and evanescent field enhancement in lossless media[J]. Advanced Photonics, 2019, 1(4): 046003 Copy Citation Text show less
    References

    [1] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov. Phys. Usp., 10, 509-514(1968). https://doi.org/10.1070/PU1968v010n04ABEH003699

    [2] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [3] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [4] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [5] A. Grbic, G. V. Eleftheriades. Negative refraction, growing evanescent waves and sub-diffraction imaging in loaded-transmission-line metamaterials. IEEE Trans. Microwave Theory Tech., 51, 2297-2305(2003).

    [6] Z. Liu et al. Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett., 83, 5184(2003).

    [7] R. Merlin. Metamaterials and the Landau—Lifshitz permeability argument: large permittivity begets high-frequency magnetism. Proc. Nat. Acad. Sci. U. S. A., 106, 1693-1698(2008).

    [8] C. Luo, S. G. Johnson, J. D. Joannopoulos. All-angle negative refraction in a three-dimensionally periodic photonic crystal. App. Phys. Lett., 81, 2352(2002).

    [9] M. S. Wheeler, J. S. Aitchison, M. Mojahedi. Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies. Phys. Rev. B, 73, 045105(2006).

    [10] W. Can, V. Shalaev. Optical Metamaterials: Fundamentals and Applications(2010).

    [11]

    [12] V. A. Podolskiy, E. E. Narimanov. Near-sighted superlens. Opt. Lett., 30, 75-77(2005).

    [13] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264-3294(2013).

    [14] S. Xiao et al. Loss-free and active optical negative-index metamaterials. Nature, 466, 735-738(2010).

    [15] J. B. Khurgin, G. Sun. In search of the elusive lossless metal. Appl. Phys. Lett., 96, 181102(2010).

    [16] M. Kuś, F. Haake, D. Delande. Prebifurcation periodic ghost orbits in semiclassical quantization. Phys. Rev. Lett., 71, 2167-2171(1993).

    [17] H. C. Chen. Theory of Electromagnetic Waves: A Coordinate-Free Approach(1983).

    [18] A. Salandrino, D. N. Christodoulides. Negative index Clarricoats-Waldron waveguides for terahertz and far infrared applications. Opt. Express, 18, 3626-3631(2010).

    [19] L. V. Alekseyev, E. Narimanov. Slow light and 3-D imaging with non-magnetic negative index systems. Opt. Express, 14, 11184-11193(2006).

    [20] J. Nemirovsky, M. C. Rechtsman, M. Segev. Negative radiation pressure and negative effective refractive index via dielectric birefringence. Opt. Express, 20, 8907-8914(2012).

    [21] L. E. Reichl. The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations(1992).

    [22] F. Haake. Quantum Signatures of Chaos(2010).

    [23] R. Scharf, B. Sundaram. Traces of ghost orbits in the quantum standard map. Phys. Rev. E, 49, R4767(1994).

    [24] T. Bartschdag, J. Maindag, G. Wunnerddag. Significance of ghost orbit bifurcations in semiclassical spectra. J. Phys. A: Math. Gen., 32, 3013-3027(1999).

    [25] B. Grémaud, D. Delande. Ghost orbits in the diamagnetic hydrogen spectrum using harmonic inversion. Phys. Rev. A, 61, 032504(2000).

    [26] R. Wangberg et al. Non-magnetic nano-composites for optical and infrared negative refraction index media. J. Opt. Soc. Am. B, 23, 498-505(2006).

    [27] S. Ramo, J. R. Whinnery, T. Van Duzer. Fields and Waves in Communication Electronics(1994).

    [28] S. Hirotsu, T. Yanagi, S. Sawada. Refractive indices of NaNO2 and anisotropic polarizability of NO2. J. Phys. Soc. Jpn., 25, 799-807(1968). https://doi.org/10.1143/JPSJ.25.799

    [29] W. R. Hamilton. Third supplement to an essay on the theory of systems of rays. Trans. R. Irish Acad., 17, 1-144(1837).

    [30] H. Lloyd. On the phenomena presented by light in its passage along the axes of biaxial crystals. Trans. R. Irish Acad., 17, 145-157(1833).

    [31] R. Potter. An examination of the phenomena of conical refraction in biaxial crystals. Lond., Edinburgh Dublin Philos. Mag. J. Sci., 18, 343-353(1841).

    [32] M. V. Berry, M. R. Jeffrey, J. G. Lunney. Conical diffraction: observations and theory. Proc. R. Soc. A, 462, 1629-1642(2006).

    [33] M. V. Berry, M. R. Jeffrey. Conical diffraction: Hamiltons diabolical point at the heart of crystal optics. Prog. Opt., 50, 13-50(2007).

    [34] C. V. Raman. Conical refraction in biaxial crystals. Nature, 107, 747(1921).

    [35] D. P. O’Dwyer et al. Optical trapping using cascade conical refraction of light. Opt. Express, 20, 21119-21125(2012).

    [36] Z. Huang, E. E. Narimanov. Optical phase retrieval using conical refraction in structured media. Opt. Lett., 41, 5567-5570(2016).

    [37] J. D. Joannopoulos et al. Photonic Crystals: Molding the Flow of Light(2008).

    [38] F. D. M. Haldane. Electromagnetic surface modes at interfaces with negative refractive index make a ‘not-quite-perfect’ lens(2002).

    [39] M. I. Dyakonov. New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP, 67, 714(1988).

    [40] D. B. Walker, E. N. Glytsis, T. K. Gaylord. Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces. J. Opt. Soc. Am., 15, 248-260(1998).

    [41] O. Takayama et al. Dyakonov surface waves: a review. Electromagnetics, 28, 126-145(2008).

    [42] L. D. Landau, E. M. Lifshitz. Electrodynamics of Continuous Media(1984).

    [43] R. Merlin. Analytical solution of the almost-perfect-lens problem. Appl. Phys. Lett., 84, 1290(2004).

    CLP Journals

    [1] Denis Baranov. Seeing a ghost: hybrid waves in anisotropic crystals[J]. Advanced Photonics, 2019, 1(4): 040501

    Evgenii Narimanov. Ghost resonance in anisotropic materials: negative refractive index and evanescent field enhancement in lossless media[J]. Advanced Photonics, 2019, 1(4): 046003
    Download Citation