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Abstract. We show that dielectric waveguides formed by materials with strong optical anisotropy support
electromagnetic waves that combine the properties of propagating and evanescent fields. These “ghost
waves” are created in tangent bifurcations that “annihilate” pairs of positive- and negative-index modes and
represent the optical analogue of the “ghost orbits” in the quantum theory of nonintegrable dynamical systems.
Ghost waves can be resonantly coupled to the incident evanescent field, which then grows exponentially
through the anisotropic media—as in the case of negative index materials. As ghost waves are supported
by transparent dielectric media, the proposed approach to electromagnetic field enhancement is free from
the “curse” of material loss that is inherent to conventional negative index composites.

Keywords: photonics, biaxial materials; negative index of refraction; nonlinear optics.

Received May 31, 2019; accepted for publication Jul. 25, 2019; published online Aug. 23, 2019.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.AP.1.4.046003]

1 Introduction
Recent development of negative index metamaterials, where
the subwavelength structure of the composite unit cell allows
simultaneously negative electric and magnetic responses,1,2 gave
rise to the experimental demonstration of such unusual phenom-
ena as negative refraction and backwards wave propagation,3

electromagnetic cloaking,4 and subwavelength focusing.5

Particularly striking is the behavior of the evanescent waves that
may show, instead of the expected decay, exponential growth
through the negative index medium,2 which offers the potential
to revolutionize near-field optics.6 However, this effect is only
present when the metamaterial unit cell size is much smaller
than the wavelength in the medium.7 As a result, while there
are many different realizations of the negative index media—
from photonic crystals8 to coupled Mie resonators9 to plasmonic
composites10—it is only the latter class that supports this expo-
nential enhancement of evanescent field.

However, the material loss inherent to plasmonic media,
due to the inevitable free-carrier absorption,11 severely limits
the evanescent field enhancement.12 Despite multiple attempts
to remove this stumbling block with new materials13 or by

incorporating material gain in the composite design,14 the
(nearly) “lossless metal”15 that would allow the evanescent field
control and amplification promised by metamaterial research
for nearly two decades since the seminal work of Pendry2

remains an elusive goal.13

In this work, we present an alternative to the plasmonic
approach. We demonstrate that strongly anisotropic dielectric
waveguides support “ghost waves,” which differ from the
“regular” propagating and evanescent fields. These ghost waves
represent the optical analogue of the ghost orbits16 in the semi-
classical theory of nonintegrable systems, and in the case of
waveguide-free propagation (see Fig. 1) can be treated as a
special case of nonuniform plane waves.17 Similar to the surface
plasmons in negative index media, these ghost waves can
resonantly couple to the incident evanescent field, resulting in
its exponential “amplification” across the anisotropic media.
However, all the primary components of the dielectric permit-
tivity tensor for the strongly anisotropic media that support
the ghost waves can be positive. As a result, the effect can be
observed in a transparent and (nearly) lossless dielectric.

Due to the complexity of the fully three-dimensional (3-D)
nanofabrication required for metamaterials with simultaneously
negative values of dielectric permittivity and magnetic permeabil-
ity, much attention has been given to the possible alternatives that*Address all correspondence to Evgenii Narimanov, E-mail: evgenii@purdue.edu
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do not rely on the magnetic response.18–20 If the desired negative
index performance can be limited to propagation in a wave-
guide, a number of such solutions are possible—using
hyperbolic metamaterials,19 Clarricoats–Waldron geometry,18 or
a waveguide with the core formed by biaxial anisotropic
dielectric20 [see Fig. 1(a)]. Note that in each of these systems,
the negative index modes appear in pairs with their positive
index counterparts, with each pair born together at the same
point of the system phase space at some critical frequency ωc.

In direct proximity to ωc, the mode dispersion ωðkzÞ can be
treated as a bifurcation diagram with the frequency taking the
role of the control parameter. Known as the tangent bifurca-
tion,21 it is subject to the general rules of nonlinear dynamics,22

such as the creation of new states in the integer number of pairs.
In particular, the actual mode spectra below the tangent bifur-
cation threshold show the signatures of the so called “ghost
orbits” formally defined as extensions of the system dynamics
to a higher-dimensional phase space (e.g., extended to complex
time and/or spatial coordinates).16,23–25 We therefore conclude
that negative index systems, in a waveguide geometry that
does not rely on magnetic response,18–20 actually support optical
equivalents of these “ghosts.” Furthermore, such optical ghost
waves are essentially different from both positive- and negative-
index modes.

Although a waveguide with the core formed by a hyperbolic
metamaterial19 will suffer high-propagation loss due to the ab-
sorption in the hyperbolic medium, the approach based on biax-
ial dielectric media20 is not so limited. Even with the metallic
cladding [see Fig. 1(a)], the propagation loss will be compara-
tively small,26,27 due to the relatively small field penetration
into the metal. (Note: even at optical frequencies, one finds the
effective loss due to the absorption in metallic waveguide
cladding on the order of Im½Kz�∕Re½Kz� ∼ 103, in contrast to
Im½Kz�∕Re½Kz� ∼ 0.1 in a hyperbolic waveguide.)

Furthermore, the mode pattern in the waveguide that is cal-
culated for the “ideal metal” boundary conditions is identical to
the standing wave formed by interfering plane waves incident
on a planar dielectric layer that does not at all involve any

high-loss components [see Fig. 1(b)]. [Note that the “ideal
metal” boundary condition that sets the tangential electric
field to zero, typically used at THz frequencies and below,
does not at all actually assume an ideal/lossless metal, but
only implies large modulus of the permittivity, regardless of
whether it is “lossless” (jRe½ϵ�j ≫ Im½½ϵ�) or extremely “lossy”
(jRe½ϵ�j ≪ Im½½ϵ�); e.g., at GHz frequencies when the use of this
approximation is nearly universal,27 the dielectric permittivity of
copper, the material often used for the microwave waveguides,
is on the order of 108i.] With the pattern of multiple beams in
Fig. 1(b), the corresponding field profile in the biaxial dielectric
becomes identical to that in the (metal-clad) waveguide and the
mathematical description that we develop for the ideal metal-
clad waveguide is fully applicable to this case. However, as long
as the field intensity is sufficiently small to neglect nonlinear
effects, the multiple incident beams solution can be expressed
as a superposition of the corresponding field profiles for a single
incident beam—which implies that the exponential field en-
hancement due to the ghost resonance predicted in the present
work, persists even in the case of a single incident beam.

We will therefore use the waveguide geometry of Fig. 1(a) as
the way to clarify the underlying dynamics and the physical
origin of the ghost waves, followed by the generalization of
our approach to its lossless counterpart of Fig. 1(b).

2 Anisotropic Dielectric Waveguide and
Ghost Waves

In the waveguide geometry of Fig. 1(a), the mode calculation is
straightforward (see Sec. 6), and we obtain
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Fig. 1 (a) The schematics of the metal-clad waveguide with the core formed by a biaxial
anisotropic dielectric material and (b) the corresponding standing wave pattern formed by the
interference of several beams incident onto a slab of the biaxial anisotropic dielectric. Green color
in (a) and (b) represents the anisotropic dielectric, whereas the gray region in (a) corresponds to
the metallic cladding of the waveguide. For the wavevectors indicated in (b), qx ¼ πmx∕ax ,
qy ¼ πmy∕ay , with integer values of mx and my the resulting field pattern is identical to that
inside the perfect metal-clad waveguide in panel (a).

Narimanov: Ghost resonance in anisotropic materials: negative refractive…

Advanced Photonics 046003-2 Jul∕Aug 2019 • Vol. 1(4)



where different signs correspond to different “branches” of the
dispersion diagram, and ϵx, ϵy, and ϵz are the primary compo-
nents of the dielectric permittivity tensor in the waveguide core.
For the waveguide, qx ¼ mxπ∕ax and qy ¼ myπ∕ay, where ax
and ay represent the dimensions of the waveguide cross section
[see Fig. 1(a)], whereas in the 3-D case of Fig. 1(b) qx and qy
correspond to the magnitudes of the in-plane momentum com-
ponents of the incident wave(s). If one of the integers mx and
my is equal to zero, the propagating fields are either TE- or
TM-polarized, otherwise, the mode has the “hybrid” structure27

when all six components of the electromagnetic field are
nonzero.

Choosing ŷ as the direction of the largest permittivity in the
ðx; yÞ plane (i.e., ϵx < ϵy), from Eq. (1), we find (see Fig. 2) that
the system supports negative index modes (with the group
velocity vz ¼ ∂ω∕∂kz < 0) if and only if

ϵx < ϵz < ϵy; (2)

and

arctan
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where the angle

φ ≡ arctanðqy∕qxÞ (4)

in the waveguide geometry [Fig. 1(a)] is defined by the dimen-
sions of the waveguide cross section [φ ¼ arctanðmyax∕mxayÞ],
whereas for the 3-D case [see Fig. 1(b)], the angle φ corresponds
to the propagation direction in the ðx; yÞ plane. This is consistent
with the results of Ref. 20, where the presence of negative
index modes in biaxial anisotropic media waveguides was first
pointed out.

Furthermore, when φ is equal to

φD ≡ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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·
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we find (see Sec. 7) that the system shows Dirac dispersion
point at the frequency

ωD ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵy − ϵxÞ
ϵyðϵz − ϵxÞ

s
· qx; (6)

as seen in Fig. 2(b). Note that, as follows from Eqs. (5) and (6),
the anisotropic waveguide system only shows the Dirac point
when all three primary components of its dielectric permittivity
tensor are different from each other. The presence of the Dirac
point in a strongly anisotropic dielectric system is not at all
surprising, as this is the original context for the discovery of
the “diabolic points” and the resulting conical diffraction.29–36

For a given set of the integers mx and my, or equivalently for
a given magnitude of the in-plane momentum on the incident
field ðqx; qyÞ [see Fig. 1(a)], the biaxial anisotropic dielectric
core supports propagating waves only above the critical fre-
quency (see Fig. 2):
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when two simultaneous tangent bifurcations appear, one at
kz ¼ kc and the other at kz ¼ −kc. Here (see Sec. 7),
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Fig. 2 The dispersion diagrams for the waves supported by sodium nitrite NaNO2, a biaxial aniso-
tropic dielectric with the primary components of the dielectric permittivity tensor20,28 ϵx ≃ 1.806,
ϵy ≃ 2.726, and ϵz ≃ 1.991. The frequency is shown in units of ω0 and the wavenumber kz in units
of k ≡ ω∕c, for (a) qx ¼ 0.5k0, qy ¼ 0.75k0; (b) qx ¼ 0.5k0, qy ≃ 0.81k0; and (c) qx ¼ 0.5k0,
qy ¼ 0.85k0, where k0 ≡ ω0∕c is the free space wavenumber at the frequency ω0. The corre-
sponding values of the critical frequency ωc are marked in each panel. For the waveguide system
in Fig. 1(a), qx ¼ πmx∕ax and qy ¼ πm∕ay , where mx and my are the positive integer numbers,
whereas for the anisotropic dielectric slab geometry in Fig. 1(b), qx and qy correspond to the
magnitudes of the (in-plane) x and y components of the incident field wavevector. Note the
Dirac point in (b) at the frequency ω ≈ 0.675ω0. Red lines represent the propagating modes,
whereas blue curves correspond to the ghost waves, with dashed and dotted lines showing
the real and the imaginary parts of the wavenumber kz .
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creates two pairs of positive- and negative-index modes.
However, if—following the standard approach originally
developed for the semiclassical dynamics of nonintegrable sys-
tems,16,23–25—one extends the system phase space to the complex
domain, Eq. (1) also yields two pairs of solutions below the
critical frequency ωc, with complex-conjugate wavenumbers
that have simultaneously nonzero real and imaginary parts:
�k0z � ik 00

z , as shown in Fig. 2 by blue lines. These modes
are the optical equivalents of the “ghost” solutions in nonlinear
dynamics16 and will therefore be referred to as the “ghost waves.”

Formally, we define the ghost mode as the guided wave
with simultaneously nonzero values of the real and imaginary
parts of its wavenumber that originates from a tangent bifurca-
tion of two distinct (i.e., not related by symmetry) propagat-
ing waves.

As guided waves supported by the dielectric waveguide core
can be interpreted in terms of the standing wave solutions of the
infinite dielectric medium (see Fig. 1), the concept of the ghost
wave can be generalized to the case of (waveguide-free) propa-
gation in three dimensions [see Fig. 1(b)]. For these “general-
ized” ghost waves, the essentially nonzero value of the plane
momentum q ≡ ðqx; qyÞ required by Eqs. (7) and (8) leads to
the intensity of a single-ghost wave that is nonuniform across
each phase front. In this case, the corresponding ghost modes
can, therefore, be considered as a special case of nonuniform
waves,17 where the amplitudes are not constant across the wave-
fronts.

Note, however, that not every nonuniform wave is a (gener-
alized) ghost wave. Consider, for example, the field of a surface
plasmon propagating along a lossy metal–dielectric interface.10

In the metallic half-space, the corresponding electric field is
a nonuniform plane wave, with the intensity that exponentially
decays away from the interface along the wavefront that is
perpendicular to the interface.10 While both the real and imagi-
nary parts of the surface plasmon wavenumber are both nonzero
in the direction of the propagation, it does not originate from
a tangent bifurcation and is not a ghost wave. Note that, as
opposed to ghost waves, for the surface plasmon, the Poynting
vector in the propagation direction is always nonzero, for any
amount of loss.

Ghost waves are also distinct from propagation within the
bandgap of a photonic crystal, which show a combination of
the oscillations and the exponential decay.37 In the case of a sim-
ple photonic crystal with a one-dimensional (1-D) periodicity,
the oscillatory behavior of the electromagnetic field in the
bandgap is set by the periodic structure of the composite,
and—in contrast to ghost waves—cannot be changed continu-
ously. In a 1-D photonic crystal, these oscillations originate
from the behavior of the zero momentum Bloch function at
the bandgap edge so that the corresponding (quasi-) momentum
in the bandgap is purely imaginary—and thus corresponds to
a conventional evanescent wave of an unstructured dielectric.

The situation, however, becomes different in photonic crys-
tals that are patterned in 2-D or 3-D. There, if the band edge
corresponds to the center of the Brillouin zone (Γ-point), the
resulting modes in the bandgap can still be treated as general-
izations of the “regular” evanescent modes and remain unrelated
to ghost waves. However, when the propagating band edge is
not at the center of the Brillouin zone (but corresponds to
the X or the L points in the case of a face-centered cubic lattice
of close-packed dielectric spheres37), modes in the bandgap will
show the behavior similar to that of the ghost waves.

3 Ghost Resonance
Qualitatively, the ghost fields combine the properties of the
evanescent and propagating waves. Similar to the evanescent
modes, the intensity of the ghost waves exponentially decays
with distance. On the other hand, the ghost waves also oscillate,
which allows one to use conventional interference to control
their propagation. The latter behavior is illustrated in Fig. 3,
corresponding to a biaxial dielectric of length d inserted into
the originally air-filled metal waveguide [see Fig. 4(a)] that
is operating below the cut-off frequency ωc, or to a biaxial
dielectric slab of the thickness d [see Fig. 4(b)]. As a function
of the length d, the field in the dielectric shows both the expo-
nential decay and the oscillations, consistent with the picture of
the excitation of the ghost waves.

Similar to the conventional evanescent modes in a waveguide
geometry, a single-ghost wave does not carry energy, with the
zero projection of the Poynting vector Sz along the axis of the
waveguide:

Sghostz ¼ 0: (9)

However, the essential difference of the ghost waves from
both the propagating and the evanescent fields, clearly manifests
itself in the wave impedance Z, defined as the ratio of the
tangential components of the electric and magnetic fields:27

Zx ¼
Ex

Hy
; (10)

Zy ¼ − Ey

Hx
: (11)

Although the wave impedance is real for the propagating
modes and purely imaginary for the evanescent fields, for the
ghost waves both its real and imaginary parts are nonzero:
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Fig. 3 The y component of the electric field in the biaxial aniso-
tropic dielectric, in either the waveguide or the slab geometry
[see the schematics in Figs. 4(a) and 4(b)], as a function of
the length d . The dielectric occupies the range 0 < z < d ,
qx ≃ 0.79k0, and qy ≃ 0.185k0. The surrounding medium is air,
and the anisotropic dielectric is sodium nitrite NaNO2. The inset
shows the field in the logarithmic scale. Note the combination of
the exponential decay and the oscillatory behavior, characteristic
of the ghost waves.
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where

q ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
: (14)

(Note that, for the ghost waves kz ¼ k0z þ ik 00
z , k0z ≠ 0 and

k 00
z ≠ 0 at the same time.)
The most important feature of the ghost waves, however, is

that they can be resonantly coupled to the incident evanescent
field. In this regime, within the biaxial dielectric supporting the
ghost waves, the evanescent decay is replaced by the exponen-
tial increase of the field amplitude—as seen in Fig. 4. Aside
from the oscillatory behavior of the ghost waves “under” the
exponential envelope, this behavior is similar to that in the neg-
ative index superlens that also shows exponential “amplifica-
tion” of the evanescent field.2 However, as the ghost waves
can be supported by a dielectric slab that does not include
any lossy components such as metals [see Fig. 4(b)], the ghost
waves are free from the constraint of the material absorption that
severely limits the superlens performance.

Although at the resonance condition ghost waves lead to the
exponential growth of the field in both the waveguide [Fig. 4(a)]
and slab [Fig. 4(b)] geometries, the corresponding behavior
away from the resonance is substantially different. In the wave-
guide geometry, as a function of frequency, the transmission
coefficient for the incident evanescent field shows a very sharp
resonance, which becomes progressively narrower with the
increase of the width of the anisotropic layer d (see Fig. 5).
This is consistent with the general behavior found in resonant
systems—when an increase of the field enhancement comes at
the expense of reduced frequency bandwidth.

In contrast to this behavior, in the slab geometry of Fig. 4(b),
the resonance condition is defined in terms of the angle of
incidence θ—see Fig. 6(a). The ghost resonance in the slab
geometry is illustrated in Fig. 6, where we plot the modulus of
the normal into interface field component jEzj in the geometry
of Fig. 4(b) at the angle of incidence corresponding to the
resonant coupling. In this regime, as long as the frequency
dispersion of the dielectric permittivities of anisotropic slab
and surrounding dielectric can be neglected (which is often the
case in transparent media), the ghost resonance [see Fig. 6(b)]
persists in a broad frequency range.

This behavior is dramatically different from the usual trade-
off between the field enhancement and frequency bandwidth
that is nearly universal in resonant systems and offers many

d

z

0

z

d

0

(a) (b) (c)

Fig. 4 Evanescent field enhancement at the ghost resonance in the (a) waveguide and (b) slab
geometry. Green region represents the biaxial anisotropic dielectric, blue is the surrounding
dielectric medium, and orange is the high-index prism coupler. (c) The x component of the electric
field, with the linear scale in the main plot and the logarithmic scale in the inset. The green-shaded
areas in (c) and its inset indicate the range occupied by the anisotropic dielectric medium.
In this example, the anisotropic dielectric is sodium nitrite NaNO2 with the width d ≃ 16.18λ0, and
the surrounding medium is dielectric with the permittivity of ϵ0 ¼ 2.01 while qx ≃ 0.793k0 and
qy ≃ 1.182k0. Note the dramatic enhancement of the incident evanescent field in the anisotropic
material.
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Fig. 5 The frequency spectrum of the “transmitted” field Ex ðdÞ,
normalized to the amplitude of the incident field E in at z ¼ 0 [see
the schematics in Figs. 4(a) and 4(b)], for the sodium nitrite biax-
ial crystal [green region in Fig. 4(a)], surrounded by an isotropic
dielectric with the permittivity ϵ ¼ 2.01 [shown in blue in Figs. 4(a)
and 4(b)], with qx ≃ 0.79k0 and qy ≃ 1.18k0. The length of the
biaxial dielectric d ≃ 7.96λ0 (red curve), d ≃ 11.94λ0 (green curve),
and d ≃ 16.78λ0 (blue curve). The frequency is normalized to
the value corresponding to the surface state at a single-sodium
nitrite–isotropic dielectric interface, given by Eq. (15).
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intriguing possibilities for applications in nonlinear optics—
such as supercontinuum generation.

However, the ghost resonance in the slab geometry (see
Fig. 6) imposes very stringent requirements on the angle of
incidence θ. With a small deviation of the incidence angle θ
from the resonance condition, the field enhancement is rapidly
suppressed (as illustrated in Fig. 7).

Although ghost resonance is very sensitive to the deviations
in the angle of incidence, it is robust to changes in polarization.
The reason for this behavior is that, in the corresponding eigen-
states in the slab geometry (due to the absence of uniaxial
symmetry in the dielectric) all (six) of the field components
are essentially nonzero. As a result, ghost states can couple to
both s- and p-polarized incident light.

4 Physical Origin of the Ghost Resonance
With the deep connection of light propagation in anisotropic di-
electric waveguides to field enhancement and super-resolution
imaging with negative index media, it should not come as a sur-
prise that the fundamental physical origin of the exponential
“amplification” in biaxial media is also similar to that in the
negative index superlens—it is the resonant coupling to surface
states supported by the medium.38 In the case of the negative
index material–air interface, the surface state in question is
the surface plasmon polariton,10,38 whereas in the biaxial dielec-
tric it is the surface mode at the isotropic dielectric–anisotropic
dielectric interface, shown in Fig. 8. This surface mode is
formed by the “regular” evanescent field in the isotropic side
and by the decaying ghost wave in the biaxial medium (note
the oscillatory behavior for z > 0 in Fig. 8). In the limit
ϵz → ϵx, this mode reduces to the well-known Dyakonov sur-
face wave that was originally introduced for the interface of
an isotroptic medium with a uniaxial dielectric.39–41

At the interface of the biaxial medium and the isotropic
dielectric with the permittivity ϵ0, the surface state dispersion
ωsðqx; qyÞ is defined by the following equation (see Sec. 8):
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Note that Eq. (15) has a solution with Reðk0Þ > 0 and
Reðk�Þ > 0 (corresponding to the surface wave) only when
ϵz < ϵ0 < ϵy.

The signatures of the surface waves are clearly visible in
Fig. 5, which shows the transmission coefficient for the incident
evanescent field as a function of frequency, for different values
of the width of the anisotropic layer d. Note that close to the
center of the ghost resonance its profile shows the double-peak
structure, corresponding to the symmetric and antisymmetric
combination of the surface states at the two interfaces. An
increase of the width of the anisotropic layer leads to the reduc-
tion of the coupling between these two surface states, which
suppresses the splitting between the peaks (see Fig. 5).

x

yz

0
– d

(a) (b)

Fig. 6 (a) The schematic of the coordinate system used in the slab geometry of Fig. 4(b). Orange
volume corresponds to the high-index prism coupler, and green layer is the biaxial dielectric.
Light blue regions represent the isotropic dielectric surrounding the biaxial medium. Blue arrow
shows the direction of the incident Gaussian beam, with the angle θ above the critical angle of
the total internal reflection θc of the coupler—isotropic dielectric interface. (b) The modulus of
the normal to the interface electric field component jEz j (in false-color representation) at the
resonance condition. The incident beam direction is defined by the angles ϕ ¼ 56.15 deg and
θ ≈ 46.462 deg, the biaxial medium is sodium nitrite NaNO2, the high-index prism is made of
gadolinium gallium garnet (ϵGGG ≈ 1.963), and the permittivity of the isotropic dielectric ϵ0 ¼ 2.01.
The wavelength is λ0 ¼ 650 nm, and the biaxial layer thickness d ≈ 7λ0 ≈ 4.57 μm.
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To further illustrate this behavior in Fig. 9, we plot the elec-
tric field Ez for the parameters corresponding to the excitation of
the symmetric [see Fig. 9(a)] and antisymmetric [Fig. 9(b)] com-
binations of the Dyakonov surface states at the biaxial–isotropic
dielectric interfaces.

Although for the idealized model of the system (lossless di-
electric, perfect planar interfaces, and no bulk defects leading to
light scattering), the transmission coefficient at the ghost reso-
nance can be arbitrarily high, any disorder will limit the field
enhancement. Although material imperfections and their impact
can be, at least in theory, reduced to an arbitrarily small level,
there is also a fundamental limit to the performance of the
proposed “ghost resonator,” imposed by the inherent nonlocality
of the electromagnetic response due to the finite size of the
material unit cell. For natural dielectric media, the correspond-
ing correction to the permittivity scales42 as ðk0a0Þ2, where
a0 is on the order of the atomic/molecular size, leading to
the fundamental limit on the evanescent field enhancement
∼1∕ðk0a0Þ2 ∼ 106.

5 Conclusions
The strong local field enhancement at or near the condition of
resonant coupling to the ghost waves can find many applications
from optical sensing, e.g., in Kretschmann geometry, where a
small variation of the refraction index of the isotropic medium
surrounding the biaxial slab would lead to a dramatic change
of the observed reflectivity, to nonlinear-optical phenomena.
The biaxial crystal anisotropy needed to support the ghost waves
naturally fits the requirements of nonlinear optics, as such
strongly anisotropic crystalline materials (e.g., sodium nitrite
used in Figs. 2–9) generally possess high second-order non-
linear susceptibilities. The combination of relatively large values
of χ2 in strongly anisotropic dielectrics with the exponential
field enhancement by several orders of magnitude in a simple
planar geometry makes the ghost wave resonance a useful
tool for nonlinear optics—from second harmonic generation
to higher-order nonlinear effects such as supercontinuum gen-
eration.

Fig. 8 The surface state profile at the interface of isotropic dielec-
tric (z < 0) with biaxial anisotropic medium (z > 0). The red and
blue lines, respectively, correspond to the x and y components of
the electric field. The biaxial dielectric is sodium nitrite NaNO2

(ϵx ≃ 1.806, ϵy ≃ 2.726, and ϵz ≃ 1.991), and the permittivity
of the isotropic medium ϵ ¼ 2.01, whereas qx ≃ 0.793k0 and
qy ≃ 1.182k0. Note the simple exponential decay in the isotropic
material and oscillatory behavior in the biaxial medium.

Fig. 7 The evolution of the electromagnetic field in the slab
geometry of Fig. 4(b), near the “ghost resonance,” with the inci-
dence angle θ: (a) 46.42 deg, (b) 46.44 deg, (c) 46.46 deg,
(d) 46.48 deg, and (e) 46.5 deg. The angle ϕ, the system spatial
dimensions, and the material parameters are the same as in
Fig. 6. Note that the entire sequence (a) to (e) corresponds to
the variation of the incidence angle θ by <0.1 deg.
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Note that the waveguide geometry that we used to introduce
the concepts of ghost waves and ghost resonances naturally
fits the requirements of nonlinear optics and optoelectronics,
where waveguide confinement is essential to further concentrate
optical intensity in the former case and allows for dense com-
ponent integration in the latter.

A dielectric system that supports ghost waves may also find
imaging applications; similar to the superlens,2 it can enhance
the evanescent fields scattered by an object that carry the infor-
mation about its subwavelength structure. However, as opposed
to the surface plasmons at the boundary of a negative medium
with ϵ ¼ −1, μ ¼ −1, when these modes can support arbitrary
high in-plane wavenumbers, the surface waves at the biaxial–
isotropic interface do not show a similar degeneracy. As a result,
the biaxial dielectric system will only perform as a lossless
superlens that operates away from the n ¼ −1 condition, with
the corresponding loss of the resolution.43

In conclusion, we have demonstrated that biaxial anisotropic
media support ghost waves that combine the properties of the
propagating and the evanescent fields. We have shown that
resonant coupling of the ghost modes can be used to exponen-
tially enhance and modulate the incident evanescent waves, thus
opening a new way for near-field control and manipulation.

6 Appendix A
For a wave propagating along axis z of waveguide in Fig. 1,
its electromagnetic field can be represented as

Eðr; tÞ ¼ Eqðx; yÞ · expðikzz − iωtÞ; (18)

Bðr; tÞ ¼ Bqðx; yÞ · expðikzz − iωtÞ; (19)

where

Eqðx; yÞ ¼ ½ex · cosðqxxÞ sinðqyyÞ; ey · sinðqxxÞ cosðqyyÞ;
ez · sinðqxxÞ sinðqyyÞ�; (20)

and

Bqðx; yÞ ¼ ½bx · sinðqxxÞ cosðqyyÞ; by · cosðqxxÞ sinðqyyÞ;
bz · cosðqxxÞ cosðqyyÞ�: (21)

Substituting Eqs. (18)–(21) into Maxwell’s equations, we
obtain

bx ¼ − c
ω
ðkzey þ iqyezÞ; (22)

by ¼
c
ω
ðkzex þ iqxezÞ; (23)

bz ¼
c
ω
ðiqyex − iqxeyÞ; (24)

and

M

 ex
ey
ez

!
¼ 0; (25)

where

M ≡

2
64
ΔxðkzÞ qxqy −ikzqx
qxqy ΔyðkzÞ −ikzqy
ikzqx ikzqy ΔzðkzÞ

3
75; (26)

and

ΔxðκÞ ¼ ϵx

�
ω

c

�
2 − q2y − k2z ; (27)

Fig. 9 The modulus of the electric field component jEz j (in false-color representation), for the
resonant excitation of the (a) symmetric and (b) antisymmetric superpositions of the Dyakonov
surface waves at the two biaxial–isotropic dielectric interfaces in the slab geometry of Figs. 4(b)
and 6(a). The incidence angle θ is equal to (a) 46.4681 deg and (b) 46.4524 deg. The angle ϕ,
the system spatial dimensions, and the material parameters are the same as in Figs. 6 and 7.
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ΔyðκÞ ¼ ϵy

�
ω

c

�
2 − q2x − k2z ; (28)

ΔzðκÞ ¼ ϵz

�
ω

c

�
2 − q2x − q2y: (29)

From Eq. (25), we obtain

detðMÞ ¼ 0; (30)

which yields

ϵz · k4z −
�
ðϵx þ ϵyÞ ·

�
ω

c

�
2 − ðϵx þ ϵzÞ · q2x − ðϵy þ ϵzÞ · q2y

�

· k2z þ
�
ϵz

�
ω

c

�
2 − q2x − q2y

��
ϵxϵy

�
ω

c

�
2 − ϵxq2x − ϵyq2y

�
¼ 0:

(31)

Equation (31) is a quadratic equation for κ2, with the straight-
forward solution

k2� ¼ 1

2

�
ðϵx þ ϵyÞ ·

�
ω

c

�
2 − ϵx þ ϵz

ϵz
q2x − ϵy þ ϵz

ϵz
q2y �

ffiffiffiffi
D

p �
;

(32)

where the discriminant

D ¼
�
ðϵx − ϵyÞ

�
ω

c

�
2

þ ϵz − ϵx
ϵz

q2x þ
ϵy − ϵz
ϵz

q2y

�
2

þ 4 ·
ðϵx − ϵzÞ · ðϵy − ϵzÞ

ϵ2z
q2xq2y: (33)

7 Appendix B
With the dispersion defined by Eq. (1) or equivalently Eqs. (32)
and (33), the propagating modes are only present above the
critical frequency ωc defined by

DðωcÞ ¼ 0; (34)

which, for ϵx < ϵz < ϵy, yields

ωc ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵy − ϵx
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵx

ϵz

r
· qx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵy
ϵz

− 1

r
· qy

�
; (35)

with the corresponding critical wavenumber

kc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵzðϵy − ϵxÞ
p h

ϵxðϵz − ϵyÞq2x þ ϵyðϵx − ϵzÞq2y

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵz − ϵxÞðϵy − ϵzÞ

q
ðϵx þ ϵyÞqxqy

i
1∕2

: (36)

The two tangent bifurcations in the dispersion diagram of
Figs. 2(a) and 2(c) that occur at the zero of the momentum
kz at the frequencies ω�

2 , correspond to

k−ðω�
2 Þ ¼ 0: (37)

Substituting Eq. (32) into Eq. (37), we obtain

ωþ
2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

ϵz

s
; (38)

ω−
2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x
ϵy

þ q2y
ϵx

s
: (39)

The necessary and sufficient condition for the presence of
the negative index modes in the waveguide is

ωc < minðωþ
2 ;ω

−
2 Þ; (40)

which leads to Eqs. (2) and (3).
When the frequency gap between ωþ

2 and ω−
2 collapses

to zero, the dispersion diagram shows the Dirac point [see
Fig. 2(b)]. For the corresponding values of qx and qy, we find

qy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵx
ϵy

·
ϵy − ϵz
ϵz − ϵx

r
· qx; (41)

so that the propagation angle φ in the plane of the isotropic–
biaxial interface [see Fig. 6(a)] is given by

φD ≡ arctan
qy
qx

����
ωD

¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵx
ϵy

·
ϵy − ϵz
ϵz − ϵx

r
; (42)

and the frequency

ωD ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵy − ϵxÞ
ϵyðϵz − ϵxÞ

s
· qx (43)

¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵy − ϵxÞ
ϵxðϵy − ϵzÞ

s
· qy: (44)

8 Appendix C
Assuming that the interface at z ¼ 0 separates transparent iso-
tropic medium with the permittivity ϵ0 at z < 0 from biaxial
anisotropic dielectric, for the guided surface wave with the
in-plane momentum q ≡ ðqx; qyÞ,

Eðr; tÞ ¼ EqðzÞ · expðiqxxþ iqyy − iωtÞ; (45)

Bðr; tÞ ¼ BqðzÞ · expðiqxxþ iqyy − iωtÞ; (46)

we obtain

EqðzÞ ¼
� ðases þ apepÞeκ0z; z < 0

aþeþe−κþz þ a−e−e−κ−z; z > 0
; (47)

Narimanov: Ghost resonance in anisotropic materials: negative refractive…

Advanced Photonics 046003-9 Jul∕Aug 2019 • Vol. 1(4)



BqðzÞ ¼
� ðasbs þ apbpÞeκ0z; z < 0

bþbþe−κþz þ b−b−e−κ−z; z > 0
; (48)

where the field amplitudes es;p, bs;p, e�, and b� are given by

es ¼ ðqy;−qx; 0Þ; (49)

bs ¼ − c
ω
ðiκ0qx; iκ0qy; q2x þ q2yÞ; (50)

ep ¼
�
qx; qy;− i

κ0
ðq2x þ q2yÞ

�
; (51)

bp ¼ iωϵ0
cκ0

ð−qy; qx; 0Þ; (52)

and

e� ¼ fiκ�qx½q2y − Δyðκ�Þ�; iκ�qy½q2x − Δxðκ�Þ�;
Δxðκ�Þ · Δyðκ�Þ − q2xq2yg; (53)

b� ¼ ω

c
fqy½ϵyΔxðκ�Þ − ϵxq2x�;−qx½ϵxΔyðκ�Þ

− ϵyq2y�; iqxqyκ�ðϵy − ϵxÞg: (54)

With nonmagnetic (μ ¼ 1) dielectric materials at both sides
of the interface, at z ¼ 0, we have the continuity of all three
components of the magnetic field Bq, and the continuity of
Ex, Ey, and Dz ≡ ϵzEz. However, as follows from Eq. (24),
the continuity of both tangential components of the electric field
immediately implies the continuity of Bz. Furthermore, since

ϵzEz ∝ ðcurlBÞz ∝ qxBy − qyBx; (55)

the continuity of Dz ¼ ϵzEz is a direct consequence of the con-
tinuity of the tangential magnetic field. Therefore, out of six
boundary conditions here only four are actually independent,
consistent with the four independent amplitudes as, ap, aþ,
and a−.

Imposing the continuity of Ex, Ey, ϵzEz, and ∂zBz ∝
ðqxBy þ qyBxÞ, we obtain:

N

0
B@

as
ap
aþ
a−

1
CA ¼ 0; (56)

where the matrix N is defined as

N ¼

2
6666664

iqy
qx

i κþðq2y − Δþ
y Þ κ−ðq2y − Δ−

y Þ
− iqx

qy
i κþðq2x − Δþ

x Þ κ−ðq2x − Δ−
x Þ

0 iq2ϵ0
κ0ϵz

Δþ
x Δþ

y − q2xq2y Δ−
xΔ−

y − q2xq2y
iq2κ0
qxqy

0 ðϵy − ϵxÞ ω2κ2þ
c2 ðϵy − ϵxÞ ω2κ2−

c2

3
7777775
; (57)

with

Δ�
x;y ≡ Δx;yðκ�Þ: (58)

Introducing the new variable ζ� corresponding to the z com-
ponents of the amplitudes of the electric field in the anisotropic
material ðeþÞz and ðe−Þz:

ζ� ¼ ðΔ�
x Δ�

y − q2xq
2
yÞ · a�: (59)

From Eqs. (56) and (57), we obtain

�
αþ α−
βþ β−

�
·

�
ζþ
ζ−

�
¼ 0; (60)

where

α� ¼ ϵz
ϵ0

þ κ�
κ0

ðωcÞ2ðϵxq2y þ ϵyq2xÞ − q2ðq2 − κ2�Þ
Δ�

x Δ�
y − q2xq2y

; (61)

β� ¼ κ� ·
κ0 þ κ�

Δ�
x Δ�

y − q2xq2y
: (62)

The dispersion of the surface wave is then given by

det

�
αþ α−
βþ β−

�
¼ 0; (63)

which yields

κ0ðκþ þ κ−Þ ·
�
ϵxϵy
ϵ0

��
ω

c

�
2 − q2x

ϵy
− q2y

ϵx

�
− κþκ−

�

þ κþκ−
�
ðϵx þ ϵyÞ

�
ω

c

�
2 − ϵ0 þ ϵx

ϵ0
q2x − ϵ0 þ ϵy

ϵ0
q2y

�

þ
�
ϵxϵy
ϵ0

κ20

��
ω

c

�
2 − q2x

ϵy
− q2y

ϵx

�
− κ2þκ2−

�
¼ 0: (64)

Equation (47) uniquely defines the dispersion relation of
the Dyakonov surface wave ωðqÞ and immediately leads to
Eq. (15) in the main body of this paper.
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