• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1015012 (2022)
Jie Hu1、2、3, Zongquan Xiong1、2、3、*, Wencai Xu1、2、3, Kai Cao4, and Ruoyu Lu4
Author Affiliations
  • 1Hubei Key Laboratory of Modern Auto Parts Technology, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 2Auto Parts Technology Hubei Collaborative Innovation Center, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 3Hubei Technology Research Center of New Energy and Intelligent Connected Vehicle Engineering, Wuhan 430070, Hubei , China
  • 4Dongfeng Yuexiang Technology Co., Ltd., Wuhan 430058, Hubei , China
  • show less
    DOI: 10.3788/LOP202259.1015012 Cite this Article Set citation alerts
    Jie Hu, Zongquan Xiong, Wencai Xu, Kai Cao, Ruoyu Lu. Lane Detection Based on a Lightweight Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1015012 Copy Citation Text show less
    References

    [1] Hu S, Huang M H, Chen Y. Lane marking detection algorithm based on double threshold segmentation and lane width[J]. Automobile Technology, 1-6(2019).

    [2] Xin C, Liu Y. Research on lane recognition algorithm based on probability Hough transform[J]. Bulletin of Surveying and Mapping, 52-55(2019).

    [3] Wang B F, Qi Z Q, Ma G C et al. Lane detection system based on region dynamically planning and dual model fitting[J]. Transactions of Beijing Institute of Technology, 34, 485-489(2014).

    [4] Guo Y T, Zhang Y J, Liu S et al. Robust and real-time lane marking detection for embedded system[M]. Zhang Y J. Image and graphics, 9219, 223-235(2015).

    [5] Hong W, Wang J T, Liu Y et al. Robust lane detection and tracking in complex environment based on DBSCAN[J]. Journal of Jilin University (Engineering and Technology Edition), 50, 2122-2130(2020).

    [6] He P, Gao F, Wei H M. Study on curve lane detection using Catmull-Rom spline[J]. Chinese Journal of Automotive Engineering, 5, 276-281(2015).

    [7] Tan H C, Yang Z, Zhu Y et al. A novel curve lane detection based on improved river flow and RANSA[C], 133-138(2014).

    [8] Lee S, Kim J, Yoon J S et al. VPGNet: vanishing point guided network for lane and road marking detection and recognition[C], 1965-1973(2017).

    [9] Pan X G, Shi J P, Luo P et al. Spatial As deep: spatial CNN for traffic scene understanding[EB/OL]. https://arxiv.org/abs/1712.06080

    [10] Neven D, Brabandere B D, Georgoulis S et al. Towards end-to-end lane detection: an instance segmentation approach[C], 286-291(2018).

    [11] Tian S, Zhang J F, Zhang Y T et al. Lane detection algorithm based on dilated convolution pyramid network[J]. Journal of Southwest Jiaotong University, 55, 386-392, 416(2020).

    [12] Xu G S, Zhang W W, Wu X C et al. Laneline semantic segmentation algorithm based on convolutional neural network[J]. Journal of Electronic Measurement and Instrumentation, 32, 89-94(2018).

    [13] Zhou S, Wu D, Jin J. Lane instance segmentation algorithm based on convolutional neural network[J]. Laser & Optoelectronics Progress, 58, 0815007(2021).

    [14] Paszke A, Chaurasia A, Kim S et al. ENet: a deep neural network architecture for real-time semantic segmentation[EB/OL]. https://arxiv.org/abs/1606.02147

    [15] Nekrasov V, Shen C H, Reid I. Light-weight RefineNet for real-time semantic segmentation[EB/OL]. https://arxiv.org/abs/1810.03272

    [16] Mehta S, Rastegari M, Caspi A et al. ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11214, 561-580(2018).

    [17] Romera E, Álvarez J M, Bergasa L M et al. ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 19, 263-272(2018).

    [18] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [19] Wang P Q, Chen P F, Yuan Y et al. Understanding convolution for semantic segmentation[C], 1451-1460(2018).

    [20] Ma N N, Zhang X Y, Zheng H T et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11218, 122-138(2018).

    [21] Jin J, Dundar A, Culurciello E. Flattened convolutional neural networks for feedforward acceleration[EB/OL]. https://arxiv.org/abs/1412.5474

    [22] Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the inception architecture for computer vision[C], 2818-2826(2016).

    [23] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015, 9351, 234-241(2015).

    [24] Lin G S, Milan A, Shen C H et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C], 5168-5177(2017).

    [25] Chen L C, Papandreou G, Schroff F et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. https://arxiv.org/abs/1706.05587

    [26] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network[C], 6230-6239(2017).

    [27] Liu W, Rabinovich A, Berg A C. ParseNet: looking wider to see better[EB/OL]. https://arxiv.org/abs/1506.04579

    [28] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [29] Hou Y N, Ma Z, Liu C X et al. Learning lightweight lane detection CNNs by self attention distillation[C], 1013-1021(2019).

    Jie Hu, Zongquan Xiong, Wencai Xu, Kai Cao, Ruoyu Lu. Lane Detection Based on a Lightweight Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1015012
    Download Citation