• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1015012 (2022)
Jie Hu1、2、3, Zongquan Xiong1、2、3、*, Wencai Xu1、2、3, Kai Cao4, and Ruoyu Lu4
Author Affiliations
  • 1Hubei Key Laboratory of Modern Auto Parts Technology, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 2Auto Parts Technology Hubei Collaborative Innovation Center, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 3Hubei Technology Research Center of New Energy and Intelligent Connected Vehicle Engineering, Wuhan 430070, Hubei , China
  • 4Dongfeng Yuexiang Technology Co., Ltd., Wuhan 430058, Hubei , China
  • show less
    DOI: 10.3788/LOP202259.1015012 Cite this Article Set citation alerts
    Jie Hu, Zongquan Xiong, Wencai Xu, Kai Cao, Ruoyu Lu. Lane Detection Based on a Lightweight Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1015012 Copy Citation Text show less
    ERFNet-LW network structure
    Fig. 1. ERFNet-LW network structure
    Comparison of core module structure. (a) Non-bottleneck-1D; (b) shuffle-unit
    Fig. 2. Comparison of core module structure. (a) Non-bottleneck-1D; (b) shuffle-unit
    Downsampling structure. (a) Initial downsampling;
    Fig. 3. Downsampling structure. (a) Initial downsampling;
    Feature fusion module
    Fig. 4. Feature fusion module
    Dataset distribution
    Fig. 5. Dataset distribution
    Evaluation based on IoU. (a) Scene 1; (b) scene 2
    Fig. 6. Evaluation based on IoU. (a) Scene 1; (b) scene 2
    Visualization of CULane test sets. (a) Original image; (b) predicted results
    Fig. 7. Visualization of CULane test sets. (a) Original image; (b) predicted results
    LayerType
    1Downsampling block
    2Downsampling block
    3-75 × Non-bottleneck-1D
    8Downsampling block
    9Non-bottleneck-1D (dilated=2)
    10Non-bottleneck-1D (dilated=4)
    11Non-bottleneck-1D (dilated=8)
    12Non-bottleneck-1D (dilated=16)
    13Non-bottleneck-1D (dilated=2)
    14Non-bottleneck-1D (dilated=4)
    15Non-bottleneck-1D (dilated=8)
    16Non-bottleneck-1D (dilated=16)
    17Deconvolution
    18-192 × Non-bottleneck-1D
    20Deconvolution
    21-222 × Non-bottleneck-1D
    23Deconvolution
    Table 1. Network architecture of ERFNet
    AlgorithmParameter /MBGFLOPsMAC /MB
    ERFNet2.6711.47343.30
    ERFNet-shuffle1.022.03167.52
    Table 2. Comparison of model indicators
    NormalCrowdedNightNo-lineShadowArrowDazzlelightCurveCrossroadTotal
    Before91.872.169.546.467.586.965.867.7252673.9
    After91.772.069.446.367.486.765.667.7252673.8
    Table 3. Comparison of F1-measure on the CULane dataset with IoU of 0.5 before and after the downsampling optimization of the model
    CategoryRes50-SegSCNNEnet-SADERFNetERFNet-LW
    Total66.771.670.873.173.9
    Normal87.490.690.191.591.8
    Crowded64.169.768.871.672.1
    Night60.666.166.067.169.5
    No-line38.143.441.645.146.4
    Shadow60.766.965.971.367.5
    Arrow79.084.184.087.286.9
    Dazzlelight54.158.560.266.065.8
    Curve59.864.465.766.367.7
    Crossroad25051990199821992526
    Table 4. Comparison of F1-measure for different algorithms on CULane dataset with IoU of 0.5
    MethodParameter /MBRuntime /ms
    Res50-Seg--
    SCNN20.72133.5
    Enet-SAD0.9813.4
    ERFNet2.6814.0
    ERFNet-LW1.2312.2
    Table 5. Comparison of parameters and runtime of different algorithms
    Jie Hu, Zongquan Xiong, Wencai Xu, Kai Cao, Ruoyu Lu. Lane Detection Based on a Lightweight Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1015012
    Download Citation