• Photonics Research
  • Vol. 8, Issue 6, 788 (2020)
Brian Julsgaard1、*, Nils von den Driesch2、3, Peter Tidemand-Lichtenberg4, Christian Pedersen4, Zoran Ikonic5, and Dan Buca2
Author Affiliations
  • 1Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
  • 2Peter Grünberg Institute 9 (PGI 9), Forschungszentrum Jülich, 52425 Jülich, Germany
  • 3JARA-Institut Green IT, RWTH Aachen, Germany
  • 4DTU Fotonik, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
  • 5Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
  • show less
    DOI: 10.1364/PRJ.385096 Cite this Article Set citation alerts
    Brian Julsgaard, Nils von den Driesch, Peter Tidemand-Lichtenberg, Christian Pedersen, Zoran Ikonic, Dan Buca. Carrier lifetime of GeSn measured by spectrally resolved picosecond photoluminescence spectroscopy[J]. Photonics Research, 2020, 8(6): 788 Copy Citation Text show less
    References

    [1] R. Geiger, T. Zabel, H. Sigg. Group IV direct band gap photonics: methods, challenges, and opportunities. Front. Mater., 2, 52(2015).

    [2] R. Soref, D. Buca, S.-Q. Yu. Group IV photonics: driving integrated optoelectronics. Opt. Photon. News, 27, 32-39(2016).

    [3] K. L. Low, Y. Yang, G. Han, W. Fan, Y.-C. Yeo. Electronic band structure and effective mass parameters of Ge1-xSnx alloys. J. Appl. Phys., 112, 103715(2012).

    [4] D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, D. Buca. Optical transitions in direct-bandgap Ge1-xSnx alloys. ACS Photon., 2, 1539-1545(2015).

    [5] N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, D. Buca. Direct bandgap group IV epitaxy on Si for laser applications. Chem. Mater., 27, 4693-4702(2015).

    [6] S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, O. Moutanabbir. Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission. Appl. Phys. Lett., 112, 251903(2018).

    [7] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, D. Grützmacher. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics, 9, 88-92(2015).

    [8] J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, S. Yu. Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K. ACS Photon., 5, 827-833(2018).

    [9] V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, V. Calvo. Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K. Appl. Phys. Lett., 111, 092101(2017).

    [10] J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, V. Calvo. GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain. ACS Photon., 6, 2462-2469(2019).

    [11] S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, O. Moutanabbir. Vacancy complexes in nonequilibrium germanium-tin semiconductors. Appl. Phys. Lett., 114, 251907(2019).

    [12] W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, S.-Q. Yu. Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth. Sci. Rep., 8, 5640(2018).

    [13] D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, D. Buca. Optically pumped GeSn microdisk lasers on Si. ACS Photon., 3, 1279-1285(2016).

    [14] D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, D. Buca. Impact of tensile strain on low Sn content GeSn lasing. Sci. Rep., 9, 259(2019).

    [15] G. W. ’t Hooft, C. van Opdorp. Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab. J. Appl. Phys., 60, 1065-1070(1986).

    [16] U. Strauss, W. W. Rühle, K. Köhler. Auger recombination in intrinsic GaAs. Appl. Phys. Lett., 62, 55-57(1993).

    [17] S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, P. J. Parbrook. Time-resolved photoluminescence studies of carrier diffusion in GaN. Appl. Phys. Lett., 89, 072107(2006).

    [18] L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, A. M. Wodtke. Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science. Acc. Chem. Res., 50, 1400-1409(2017).

    [19] S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, F. Pezzoli. Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon. Phys. Rev. B, 99, 035202(2019).

    [20] J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photonics, 6, 788-793(2012).

    [21] S. Roesgaard, L. Meng, P. Tidemand-Lichtenberg, J. S. Dam, P. J. Rodrigo, C. Pedersen, B. Julsgaard. Time-resolved infrared photoluminescence spectroscopy using parametric three-wave mixing with angle-tuned phase matching. Opt. Lett., 43, 3001-3004(2018).

    [22] A. Barh, M. Tawfieq, B. Sumpf, C. Pedersen, P. Tidemand-Lichtenberg. Upconversion spectral response tailoring using fanout QPM structures. Opt. Lett., 44, 2847-2850(2019).

    [23] J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, L. Clavelier. Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si. Semicond. Sci. Tech., 24, 055002(2009).

    [24] F. Pezzoli, A. Giorgioni, D. Patchett, M. Myronov. Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers. ACS Photon., 3, 2004-2009(2016).

    [25] D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, D. Buca. Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures. Sci. Rep., 8, 15557(2018).

    [26] E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, H. J. Queisser. Alloy broadening in photoluminescence spectra of AlxGa1-xAs. Phys. Rev. B, 30, 813-820(1984).

    [27] A. J. Sabbah, D. M. Riffe. Femtosecond pump-probe reflectivity study of silicon carrier dynamics. Phys. Rev. B, 66, 165217(2002).

    [28] D. E. Aspnes, A. A. Studna. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B, 27, 985-1009(1983).

    [29] J. R. Lakowicz. Principles of Fluorescence Spectroscopy(2006).

    [30] X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, J. Liu. GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics. Front. Phys., 7, 134(2019).

    [31] P. W. Milonni, J. H. Eberly. Lasers(1988).

    [32] M. A. Gilleo, P. T. Bailey, D. E. Hill. Free-carrier and exciton recombination radiation in GaAs. Phys. Rev., 174, 898-905(1968).

    [33] G. Neuer. Spectral and total emissivity measurements of highly emitting materials. Int. J. Thermophys., 16, 257-265(1995).

    [34] T. B. Bahder. Eight-band k·p model of strained zinc-blende crystals. Phys. Rev. B, 41, 11992-12001(1990).

    [35] Y. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154(1967).

    [36] U. Piesbergen. Die durchschnittlichen atomwärmen der AIIIBV-halbieiter AlSb, GaAs, GaSb, InP, InAs, InSb und die atomwärme des elements germanium zwischen 12 und 273°K. Z. Naturforschg., 18A, 141-147(1963).

    [37] R. C. Smith. High-temperature specific heat of germanium. J. Appl. Phys., 37, 4860-4865(1966).

    [38] C. J. Glassbrenner, G. A. Slack. Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev., 134, A1058-A1069(1964).

    [39] J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, J. M. Ziman. The thermal conductivity of germanium and silicon between 2 and 300°K. Proc. R. Soc. Lon. Ser. A, 238, 502-514(1957).

    CLP Journals

    [1] Bahareh Marzban, Daniela Stange, Denis Rainko, Zoran Ikonic, Dan Buca, Jeremy Witzens. Modeling of a SiGeSn quantum well laser[J]. Photonics Research, 2021, 9(7): 1234

    Brian Julsgaard, Nils von den Driesch, Peter Tidemand-Lichtenberg, Christian Pedersen, Zoran Ikonic, Dan Buca. Carrier lifetime of GeSn measured by spectrally resolved picosecond photoluminescence spectroscopy[J]. Photonics Research, 2020, 8(6): 788
    Download Citation