• Matter and Radiation at Extremes
  • Vol. 7, Issue 6, 065901 (2022)
Yao-Hua Chen1, Zhichao Li2, Hui Cao1, Kaiqiang Pan2, Sanwei Li2, Xufei Xie2, Bo Deng2, Qiangqiang Wang2, Zhurong Cao2, Lifei Hou2, Xingsen Che2, Pin Yang2, Yingjie Li2, Xiaoan He2, Tao Xu2, Yonggang Liu2, Yulong Li2, Xiangming Liu2, Haijun Zhang2, Wei Zhang2, Baibin Jiang2, Jun Xie2, Wei Zhou2, Xiaoxia Huang2, Wen Yi Huo1, Guoli Ren1, Kai Li1, Xudeng Hang1, Shu Li1, Chuanlei Zhai1, Jie Liu3、4, Shiyang Zou1, Yongkun Ding1、4, and Ke Lan1、4、a)
Author Affiliations
  • 1Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
  • 3Graduate School, China Academy of Engineering Physics, Beijing, China
  • 4HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1063/5.0102447 Cite this Article
    Yao-Hua Chen, Zhichao Li, Hui Cao, Kaiqiang Pan, Sanwei Li, Xufei Xie, Bo Deng, Qiangqiang Wang, Zhurong Cao, Lifei Hou, Xingsen Che, Pin Yang, Yingjie Li, Xiaoan He, Tao Xu, Yonggang Liu, Yulong Li, Xiangming Liu, Haijun Zhang, Wei Zhang, Baibin Jiang, Jun Xie, Wei Zhou, Xiaoxia Huang, Wen Yi Huo, Guoli Ren, Kai Li, Xudeng Hang, Shu Li, Chuanlei Zhai, Jie Liu, Shiyang Zou, Yongkun Ding, Ke Lan. Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums[J]. Matter and Radiation at Extremes, 2022, 7(6): 065901 Copy Citation Text show less
    References

    [1] J.Nuckolls, G.Zimmerman, A.Thiessen, L.Wood. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139(1972).

    [2] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [3] S.Atzeni, J.Meyer-ter-Vehn. The Physics of Inertial Fusion(2004).

    [4] D.Clery. Laser-powered fusion effort nears ‘ignition. Science, 373, 841(2021).

    [5] R.Acree, H.Abu-Shawareb, J.Adams, R.Aden, P.Adams, B.Addis et al. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001(2022).

    [6] J. E.Ralph, A. L.Kritcher, D. A.Callahan, O. A.Hurricane, D. T.Casey, A. B.Zylstra et al. Experimental achievement and signatures of ignition at the National Ignition Facility. Phys. Rev. E, 106, 025202(2022).

    [7] A. B.Zylstra, C. R.Weber, D. S.Clark, A. L.Kritcher, O. A.Hurricane, D. A.Callahan et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. Phys. Rev. E, 106, 025201(2022).

    [8] W. J.Hogan, E. M.Campbell. The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science. Plasma Phys. Controlled Fusion, 41, B39(1999).

    [9] M. W.Bowers, S. N.Dixit, P. J.Wegner, J. M.Auerbach, G. V.Erbert, C. A.Haynam et al. National Ignition Facility laser performance status. Appl. Opt., 46, 3276(2007).

    [10] R. E.Tipton, A. L.Kritcher, M. E.Martin, D. C.Swift, J.Nilsen, H. D.Whitley et al. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018401(2020).

    [11] P.Michel et al. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).

    [12] J. D.Moody, R. L.Berger, D. K.Bradley, E.Bond, P.Michel, L.Divol et al. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys., 8, 344-349(2012).

    [13] D. A.Callahan, J. E.Ralph, O. A.Hurricane, A. L.Kritcher, A. B.Zylstra, H. F.Robey et al. Burning plasma achieved in inertial fusion. Nature, 601, 542(2022).

    [14] L.Divol, E.Dewald, J. D.Moody, J.Kline, S.Glenzer, R. K.Kirkwood et al. A review of laser-plasma interactions physics of indirect drive fusion plasma. Plasma Phys. Controlled Fusion, 55, 103001(2013).

    [15] A.Pak, F.Hartemann, M.Hohenberger, J.Milovich, P.Michel, E. L.Dewald et al. Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums. Phys. Rev. Lett., 116, 075003(2016).

    [16] N.Jourdain, T.Gong, V. T.Tikhonchuk, K. Q.Pan, O.Renner, F. P.Condamine et al. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype. Matter Radiat. Extremes, 6, 025902(2021).

    [17] S.Skupsky, P.McKenty, V. N.Goncharov, J. P.Knauer, T. R.Boehly, V. A.Smalyuk et al. A model of laser imprinting. Phys. Plasmas, 7, 2062(2000).

    [18] E. L.Dewald, D. S.Clark, L. F. B.Hopkins, A.Pak, L.Divol, C. R.Weber et al. Impact of localized radiative loss on inertial confinement fusion implosions. Phys. Rev. Lett., 124, 145001(2020).

    [19] W.Zheng, X.He, K.Lan, J.Liu, D.Lai. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at a golden hohlraum-to-capsule radius ratio(2013).

    [20] W.Zheng, X.-T.He, J.Liu, D.Lai, K.Lan. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14. Phys. Plasmas, 21, 010704(2014).

    [21] J.Liu, D.Lai, W.Zheng, X.-T.He, K.Lan. Octahedral spherical hohlraum and its laser arrangement for inertial fusion. Phys. Plasmas, 21, 052704(2014).

    [22] K.Lan, W.Zheng. Novel spherical hohlraum with cylindrical laser entrance holes and shields. Phys. Plasmas, 21, 090704(2014).

    [23] K.Lan. Dream fusion in octahedral spherical hohlraum. Matter Radiat. Extremes, 7, 055701(2022).

    [24] J.Liu, Y.Chen, Z.Li, W.Huo, K.Lan, X.Xie et al. Progress in octahedral spherical hohlraum study. Matter Radiat. Extremes, 1, 8(2016).

    [25] J.Liu, K.Lan, Z.Li, W.Huo, G.Ren, D.Yang et al. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole. Matter Radiat. Extremes, 1, 2(2016).

    [26] J.Liu, G.Ren, W. Y.Huo, K.Lan, S.Li, Z.Li, D.Yang et al. Comparison of the laser spot movement inside cylindrical and spherical hohlraums. Phys. Plasmas, 24, 072711(2017).

    [27] C.Zheng, Z.Li, C.Zhai, X.Xie, Y. H.Chen, K.Lan et al. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target. Phys. Rev. E, 95, 031202(R)(2017).

    [28] C.Zhai, C.Zheng, L.Hao, Z.Li, X.Xie, Y.Chen et al. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility. Matter Radiat. Extremes, 2, 77(2017).

    [29] X.Xie, W. Y.Huo, Z.Li, J.Liu, Y. H.Chen, K.Lan et al. First investigation on the radiation field of the spherical hohlraum. Phys. Rev. Lett., 117, 025002(2016).

    [30] X.Xie, Z.Li, D.Yang, S.Li, L.Jing, Y.Huang et al. Radiation flux study of spherical hohlraums at the SGIII prototype facility. Phys. Plasmas, 23, 112701(2016).

    [31] G.Ren, H.Cao, Y.-H.Chen, X.Xie, Z.Li, W. Y.Huo et al. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility. Phys. Rev. Lett., 120, 165001(2018).

    [32] Z.Li, Y.Dong, J.Wu, Y.Chen, H.Cao, K.Lan et al. First inertial confinement fusion implosion experiment in octahedral spherical hohlraum. Phys. Rev. Lett., 127, 245001(2021).

    [33] J.Zhu, D.Zhao, L.Ren. Beam guiding system geometric arrangement in the target area of high-power laser drivers. High Power Laser Sci. Eng., 3, e12(2015).

    [34] M. C.Monteil, P. E.Masson-Laborde, F.Philippe, P.Gauthier, V.Tassin, A.Casner et al. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums. Phys. Plasmas, 23, 022703(2016).

    [35] D. E.Hinkel, W. A.Farmer, J. H.Hammer, P. A.Amendt, M.Tabak. High-temperature hohlraum designs with multiple laser-entrance holes. Phys. Plasmas, 26, 032701(2019).

    [36] R. S.Craxton, W.Wang. Development of a beam configuration for the SG4 laser to support both direct and indirect drive.

    [37] S.Craxton. A new beam configuration to support both spherical hohlraums and symmetric direct drive.

    [38] R. S.Craxton, W. Y.Wang. Pentagonal prism spherical hohlraums for OMEGA. Phys. Plasmas, 28, 062703(2021).

    [39] R. S.Craxton, W. Y.Wang. A proposal for pentagonal prism spherical hohlraum experiments on OMEGA.

    [40] D.Galmiche, S.Laffite, M.Vandenboomgaerde, A.Casner, J. P.Jadaud, J.Bastian et al. Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion. Phys. Rev. Lett., 99, 065004(2007).

    [41] K.Lan, Y.Zhao, X.Li, D.Lai. Initial study and design on ignition ellipraum. Laser Part. Beams, 30, 175(2012).

    [42] E. L.Dewald, S.Le Pape, L.Divol, A.Pak, L. F.Berzak Hopkins, S.Bhandarkar et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett., 120, 245003(2018).

    [43] D.Ho, J.Lindl, S.Khan, P.Amendt, V.Smalyuk, Y.Ping et al. Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum. Phys. Plasmas, 26, 082707(2019).

    [44] B. A.Hammel, D. S.Clark, J. D.Salmonson, S. W.Haan, J. D.Lindl, D. A.Callahan et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001(2011).

    [45] G.Ren, D.Lai, X.-T.He, P.Gu, X.Li, C.Wu, K.Lan, W.Huo. An initial design of hohlraum driven by a shaped laser pulse. Laser Part. Beams, 28, 421(2010).

    [46] G. D.Tsakiris, R.Sigel, S.Sakabe, R.Pakula. X-ray generation in a cavity heated by 1.3 or 0.44 mm laser light III Comparison of the experimental results with theoretical predictions for x-ray confinement. Phys. Rev. A, 38, 5779-5785(1988).

    [47] T.Feng, Y.Xu, D.Lai, K.Lan, X.Meng. Study on two-dimensional transfer of radiative heating wave. Laser Part. Beams, 23, 275(2005).

    [48] D.-G.Kang, C.-L.Zhai, P.Song, S.Jiang, H.Yong, P.-J.Gu, J.-F.Gu, X.-D.Hang. Numerical simulation of 2-D radiation-drive ignition implosion process. Commun. Theor. Phys., 59, 737(2013).

    [49] Y.Li, K.Lan, Y.Gao, W.Pei, D.Lai. Radiation-temperature shock scaling of 1 ns laser-driven hohlraums. Phys. Plasmas, 17, 042704(2010).

    [50] S.Li, Y.Li, X.Li, W. Y.Huo, D.Yang, K.Lan et al. Determination of the hohlraum M-band fraction by a shock-wave technique on the SGIII-prototype laser facility. Phys. Rev. Lett., 109, 145004(2012).

    [51] K.Lan, X.Qiao. Study of high-Z-coated ignition target by detailed configuration accounting atomic physics for direct-drive inertial confinement fusion. Plasma Phys. Controlled Fusion, 61, 014006(2019).

    [52] H.Cao, C.Zhai, K.Lan, Y.-H.Chen, C.Zheng. Design of octahedral spherical hohlraum for CH Rev5 ignition capsule. Phys. Plasmas, 24, 082701(2017).

    [53] E.Moses, J.Lindl, O.Landen, J.Edwards. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [54] B. E.Yoxall, S. A.MacLaren, K.Widmann, J. H.Hammer, N. B.Meezan, M. B.Schneider et al. The size and structure of the entrance hole in gas-filled hohlraums at the National Ignition Facility. Phys. Plasmas, 22, 122705(2015).

    [55] E. L.Dewald, O. A.Hurricane, C.Cerjan, D. A.Callahan, P. M.Celliers, D. T.Casey et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [56] S.Li, Y.Ding, S.Liu, S.Jiang, F.Wang, J.Yang et al. Recent diagnostic developments at the 100 kJ-level laser facility in China. Matter Radiat. Extremes, 5, 035201(2020).

    [57] J.Lindl. Overview and status of the National Ignition Campaign on the NIF.

    [58] N. B.Meezan, S.Le Pape, L. F.Berzak Hopkins, D. D.Ho, A. J.Mackinnon, L.Divol et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum. Phys. Rev. Lett., 114, 175001(2015).

    [59] A. L.Kritcher, O. A.Hurricane, A. B.Zylstra, D. A.Callahan et al. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Phys. Plasmas, 28, 072706(2021).

    [60] C.Zhai, Y.-H.Chen, J.Liu, K.Lan, G.Ren, Y.Li. Octahedral spherical hohlraum for Rev. 6 NIF beryllium capsule. Phys. Plasmas, 25, 102701(2018).

    [61] K.Lan, X.Qiao. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion. Phys. Rev. Lett., 126, 185001(2021).

    Yao-Hua Chen, Zhichao Li, Hui Cao, Kaiqiang Pan, Sanwei Li, Xufei Xie, Bo Deng, Qiangqiang Wang, Zhurong Cao, Lifei Hou, Xingsen Che, Pin Yang, Yingjie Li, Xiaoan He, Tao Xu, Yonggang Liu, Yulong Li, Xiangming Liu, Haijun Zhang, Wei Zhang, Baibin Jiang, Jun Xie, Wei Zhou, Xiaoxia Huang, Wen Yi Huo, Guoli Ren, Kai Li, Xudeng Hang, Shu Li, Chuanlei Zhai, Jie Liu, Shiyang Zou, Yongkun Ding, Ke Lan. Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums[J]. Matter and Radiation at Extremes, 2022, 7(6): 065901
    Download Citation